What is the LIT Revolution?

It is the universal guidance theory for efficient system designs that has inherently surfaced from the confluence of five ideas. They are:

1) The source entropy and channel capacity performance bounds of Shannon’s mathematical theory of communication.

2) The latency time (LT) certainty of spacetime in physics.

3) The information space (IS) uncertainty of spacetime in physics.

4) The black hole Hawking radiation and its Boltzmann thermodynamics entropy S in SI J/K.

5) The 1978 conjecture of a structural-physical LT-certainty/IS-uncertainty duality formed by the "matched filters" of
uncertainty detection problems and the newly discovered "matched processors" of certainty quantized control
problems [1].

LIT is characterized by a four quadrants revolution with two mathematical-intelligence quadrants and two physical-life ones. Each quadrant of LIT is assumed to be physically independent of the others and guides its designs with an entropy if it is IS-uncertain and an ectropy if it is LT-certain. While LIT’s physical-life quadrants I and III address the efficient use of life time by physical signal movers and of life space by physical signal retainers, respectively, its mathematical-intelligence quadrants II and IV address the efficient use of intelligence space by mathematical signal sources and of processing time by mathematical signal processors, respectively. Moreover, the system design methodologies of the LIT qradrants are guided by dualities and performance bounds, which are, in turn, bridged by statistical physics. The statistical physics methods include a newly discovered time dual for thermodynamics that has been named lingerdynamics. The theoretical and practical relevance of LIT has already been demonstrated using real-world control, adaptive radar, physics and biochemistry applications.

[1] Feria, E.H. (1981) "Matched Processors for Optimum Control" PhD Dissertation, CUNY, August 1981


TEL: (718) 982-2814      EMAIL: FERIA@MAIL.CSI.CUNY.EDU      BOOKMARK US

COPYRIGHT  ©  2014       INTELLIGENT SYSTEMS LABORATORY       ALL RIGHT RESERVED