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Abstract — Lingerdynamics is thermodynamics’ time dual 
that inherently surfaced from latency information theory 
(LIT), which is itself a nascent universal guidance theory for 
efficient system designs. This paper reveals two novel 
lingerdynamics ectropies that are the time duals of two 
thermodynamics entropies, one of which is also novel. The 
classical thermodynamics source-entropy (TSE) of 
information-sources and the novel thermodynamics retainer-
entropy (TRE) of information-retainers are thermodynamics’, 
while the lingerdynamics processor-ectropy (LPE) of 
information-processors and the lingerdynamics mover-ectropy 
(LME) of information-movers are lingerdynamics’. An 
important finding of this paper is the discovery that the 2nd law 
of thermodynamics must be enhanced to state that the 
universe’s two TSE and TRE entropies, not just the TSE, must 
continuously increase. Another finding is the 2nd law of 
lingerdynamics that states that the universe’s two LPE and 
LME ectropies continuously increase. Guided by these results 
a new lifespan LIT duality theory for both living and non-
living systems is revealed and the gravitational and electrical 
forces shown to be emergent TRE entropic forces. Finally LIT 
leads us to the theory that the universe’s unexplained dark-
energy and dark-matter can be explained as a motion-vacuum-
energy/retention-black-hole-gravity LIT duality. 

 
Keywords — latency-time certainty, information-space uncertainty, 
mathematical-intelligence, physical-life, communication-channel, 
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I. INTRODUCTION 
Four confirmed physical dimensions rule the universe, one is 
temporal and the other three are spatial, where the three space 
dimensions convey the up, side and front directions. While the 
three space dimensions are used to describe the location of 
information-space (IS), in the form of mass and/or energy, the 
time dimension is used to describe the latency-time (LT) 
associated with the IS communication through space and/or 
observation across space. Moreover, while LT has a certainty 
nature due to the observed ‘certainty’ of the uniform passing 
of time, IS has an uncertainty nature due to the ‘uncertainty’ 
of the communicated configuration of space (expressed as the 
Heisenberg uncertainty principle for mass and the wave-
particle duality for photons). Thus the space-time physical 
dimensions of the universe are characterized by a 
certainty/uncertainty duality. There are also four readily 
identifiable universal types of systems where their efficient 
use of IS and LT resources is of interest. They are: 1) physical 
IS movers (such as photons, racing cars and 100 meter human 

runners) with the moved physical IS communicated through a 
limited channel (such as the multi-path running tracks of the 
100 meter dash), and of main interest is the life-time, or 
physical LT in SI second units, used by the mover (such as the 
10 seconds spent by exceptional humans to run 100 meters); 
2) mathematical IS sources (such as a multimedia compressor) 
with the sourced mathematical IS communicated through a 
noisy channel (such as a Gaussian additive one), and of main 
interest is the intelligence space (intel-space in short), or 
mathematical IS in binary digit (bit) units, used by the source 
(such as the 4 Megabytes of a synthetic aperture radar (SAR) 
image); 3) physical IS retainers (such as a thermos for hot tea 
and the human body for its mass where food is digested daily 
to compensate for any lost energy) with the retained physical 
IS observed across a noisy sensor (such as the mouth of an 
unknown hot tea drinker), and of main interest is the life-
space, or physical IS in SI m3 volume units or m2 surface units, 
used by the physical IS retainer (such as the surface area of the 
volume of hot tea retained in a thermal cup); 4) mathematical 
IS processors (such as the deterministic plants of linear 
quadratic control and matched processors control [1], the 
airborne moving target indicator (AMTI) of an adaptive radar 
system [2] and the full adder [3]) with the processed 
mathematical IS observed across a limited sensor (such as a 
two-path sensor whose two limited LT windows are used to 
observe the two outputs, sum and carry, of the full-adder), and 
of main interest is the intelligence time (intel-time in short), or 
mathematical LT in bit operator (bor) units used by the 
mathematical IS processor (such as the two bor levels of a 
full-adder whose OR-AND-Invert ‘wired logic’ 
implementation is constrained to the use of 2-input gates). 
Until recently [4] of the four systems mentioned, only 
mathematical IS sources have had a ‘universal’ guiding theory 
for their efficient designs; namely, information theory which 
with its lower source-entropy and upper channel capacity 
performance bounds advances highly effective tools for the 
universal guidance of information system designs [5]. It is 
thus expected that the discovery of ‘universal’ guiding 
theories for the efficient design of physical IS movers, 
physical IS retainers and mathematical IS processors will also 
be highly effective in their applications, particularly if they 
lead to a cross fertilization with classical information theory 
and the revelation of fundamental connections among them. 

A head start in the development of a universal guidance 
theory for the efficient design of the three remaining types of 
universe’s systems commenced with the launching in 2009 of 
latency information theory (LIT) [4]. LIT unified five 
fundamental theories: namely, 1) the classical information 
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theory [5]-[6]; 2) the LT-certainty motion theories of space-
time physics [7]; 3) the IS-uncertainty retention theories of 
space-time physics [8]; 4) the statistical-physics theories of 
black-holes, ideal-gases and general mediums [9]; and 5) the 
structural and physical LT-certainty/IS-uncertainty duality 
theory discovered by the author in 1978 when studying 
stochastic control problems that led to his Ph.D. in 1981 [10]. 
The practical relevance of LIT has already been demonstrated 
with the solution of real-world problems. These problems are 
found in engineering (such as source compression, control and 
radar where a powerful and fast ‘knowledge unaided’ LIT 
inspired radar scheme was revealed recently [11] that 
emulated the performance of SAR knowledge aided radar 
[12]), in physics (such as the discovery of the retention dual 
for the laws of motion in physics [8] that offers a new duality 
perspective for retention systems [9]) and in thermodynamics 
with its four universal laws [13] (such as its revealed time 
dual, named lingerdynamics with also four laws [14]-[15], and 
the finding of a new thermodynamics retention-entropy (TRE) 
for information-retainers that is the retention dual of the 
‘classical’ thermodynamics source-entropy (TSE) for 
information-sources). 
 In this paper two novel ectropies are revealed that are 
the time-dual of the thermodynamics’ TSE and TRE: namely, 
the lingerdynamics processor-ectropy (LPE) of information-
processors and the lingerdynamics mover-ectropy (LME) of 
information-movers. An inherent new LIT duality finding is 
that the 2nd law of thermodynamics statement that the entropy 
of the universe (or equivalently its TSE) continuously 
increases must also include the novel TRE. Another duality 
discovery is its 2nd law of lingerdynamics time dual stating 
that the LPE and LME of the universe continuously increase. 
Guided by these findings a lifespan duality theory is revealed 
for both non-living and living [16] systems. Also gravitational 
and electrical forces are found to be ‘emergent TRE entropic’ 
rather than fundamental in nature [17]. Finally LIT leads us to 
the theory that the universe’s unexplained dark-energy [18] 
and dark-matter [19] can be explained as a motion-vacuum-
energy/retention-black-hole-gravity LIT duality [20], [8]. 

The paper is organized as follows. In Section II the global 
characteristics of the LIT duality are summarized. In Section 
III the thermodynamics entropies and lingerdynamics 
ectropies of LIT are stated and illustrated with simple 
examples. In Section IV fundamental bridges between the LIT 
entropies and ectropies are revealed. In Section V three LIT 
results are established. The paper ends with conclusions.  

II. THE  LIT REVOLUTION 
The main global characteristics of LIT are easily 

described with the aid of its template which is displayed in 
Fig. 1. This template has been given the name ‘the LIT 
revolution’ since it is made of four quadrants, each 
highlighting a different system design guidance methodology. 
They are: 1) Quadrant I with its ‘physical latency theory’ 
advancing guidance schemes for the design of life-time 
efficient movers of space-communicated information through 
limited  life-time  channels;  2)  Quadrant II  with  its  classical  
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Fig. 1 The LIT Revolution Global Characteristics 

 
‘mathematical information theory’ [5] advancing guidance 
schemes for the design of intel-space efficient sources of time-
communicated information through noisy intel-space 
channels; 3) Quadrant III with its novel ‘physical information 
theory’  advancing  guidance  schemes  for  the  design of life-
space efficient retainers of time-observed information across 
noisy life-space sensors; and 4) Quadrant IV with its novel 
‘mathematical latency theory’ advancing guidance schemes 
for the design of intel-time efficient processors of space-
observed information across limited intel-time sensors.  
 

The movers and retainers of quadrants I and III are said to 
be physical-life types since their life-time and life-space are 
specified using physical units, while the sources and 
processors of quadrants II and IV are said to be mathematical-
intelligence types since their intel-space and intel-time are 
specified using mathematical units. In addition, while the 
sources and movers of quadrants II and I are said to be 
communication-channel types since their intel-space and life-
time are communicated through channels, the retainers and 
processors of quadrants III and IV are said to be observation-
sensor types since their life-space and intel-time are observed 
across sensors. Also, while the sources and retainers of 
quadrants II and III are said to be IS-uncertainty types since 
their intel-space and life-space are stated with IS-uncertainty 
units, the movers and processors of quadrants I and IV are said 
to be LT-certainty types since their life-time and intel-time are 
stated with LT-certainty units. Moreover, while the designs of 
quadrants II and III use probability distributions that model the 
past IS-uncertainties of sources and retainers as well as their 
channels and sensors, the designs of quadrants I and IV use 
constrained structures that model the future LT-certainties of 
movers and processors as well as their channels and sensors. 

Finally the LIT revolution is noted to be characterized by 
three major dualities, each having two minor ones for a total 
of six basic dualities. The three major dualities are: namely, 1) 
the vertical IS-uncertainty/LT-certainty—or (II,III)/(I,IV)—
major duality with its two IS-uncertainty II/III and LT-
certainty I/IV minor dualities; 2) the horizontal 
communication-channel/observation-sensor—or (II,I)/(III,IV) 
—major duality, with its two communication-channel II/I and 
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observation-sensor III/IV minor dualities; and 3) the diagonal 
mathematical-intelligence/physical-life—or (II,IV)/(III,I) —
major duality, with its two mathematical-intelligence II/IV and 
physical-life III/I minor dualities. In particular, the 
mathematical-intelligence II/IV minor duality was first 
identified by the author in 1978 in Linear Quadratic Gaussian 
(LQG) control [21], which in turn led him to the revelation of 
Matched Processors for quantized control ([1], [10]) which is 
the structural and LT-certainty dual of the IS-uncertainty 
Matched Filters structures for bit detection [22]. 

III. THE DESIGN GUIDING ENTROPIES AND ECTROPIES 
In this section the LIT revolution’s guiding entropies and 
ectropies for system designs are stated with the aid of Fig. 2. 
Moreover, their corresponding 2nd law of thermodynamics and 
2nd law of lingerdynamics are revealed. 
A. The Thermodynamics Source-Entropy and its 2nd Law: 
Consider the information-source of quadrant II of Fig. 2 which 
has a random variable output G. This information-source is 
illustrated with one yielding for G the displayed monochrome 
image with an expected source-rate RS of 8 bits/pixel. The 8 
bits of RS denotes the sourced intel-space amount. One then 
seeks to determine a replacement for the information-source 
with a source-coder (encoder/decoder) which is lossless when 
its output Ĝ  is the same as G and is lossy otherwise. The rate 
of this source-coder is the source-encoder rate RSE in bits/pixel 
that is less than or equal to that of the information-source RS, 
i.e. .RR SSE ≤ To guide the design of the source-coder classical 
‘mathematical information theory’ [5] provides the source-
entropy with symbol H which is defined as the expected 
source-information of the information-source. The value of H 
then sets for us a lower bound for a lossless source-coder 
design which for the image displayed in Fig. 2 is given by 7.44 
bits/pixel. Also in Fig. 2 the output of the source-coder is 
shown for two cases. The first is the RSE=H=7.44 bits/pixel 
best lossless case yielding the maximum lossless intel-space 
compression ratio of RS/RSE=1.0753. The second is the lossy 
RSE= 0.1036 bits/pixel < H lossy case yielding the significantly 
higher intel-space compression ratio of RS/RSE=77.2147 and 
producing a lossy image that can be satisfactory for some 
applications [23]. The source-entropy H that guides the 
source-coder design is then defined as the expected source-
information 

Maxi iSiSiS  H  gIgP)(gIEH ≤=== ∑Ω

=
Ω̂log)(][][ 21

        (1) 

 ])[/1(log)( 2 iSiS gPgI =                           (2)    
H2ˆ =Ω                                      (3) 

where: 1) G ∈{g1,..,gΩ} is a random variable composed of the 
Ω  outcomes {g1,..,gΩ}; 2) PS[gi] is the source-probability of gi; 
3) IS(gi) is the source-information of gi in mathematical bit 
units; 4) Ω≤Ω̂  is the number of distinct levels, or effective 
number of outcomes, that can be specified with the bits of the 
source-entropy H; and 5) HMax=log2Ω is the ‘maximum 
source-entropy’ that results when the probabilities of the G 
outcomes are equally likely.  

When used in statistical-physics problems the source-
entropy H (1)-(3) will be called the thermodynamics source-
entropy since it is linked to thermodynamics  via  the  equation 

BkS/H 2lnΩ̂log2 ==                           (4) 
where S is the Boltzmann thermodynamics-entropy [24] in  SI 
J/K units, kB is the Boltzmann constant in SI J/K units and Ω̂  
is the effective number of outcomes or microstates. In 
statistical-physics a microstate is defined as a particular 
microscopic configuration of the information-source 
individual atoms and molecules. In particular, the 2nd law of 
thermodynamics [13] states that, ‘the entropy (or equivalently 
the H) of a closed system, i.e., a system that does not allow 
any type of interaction with the outside, is continuously 
increasing until its thermal energy ET=kBT, or equivalently the 
free work energy of Helmholtz and Gibbs [13], is depleted’, 
where ET is in SI J units and T is the temperature of the 
closed-system in SI K units. Moreover, since H monotonically 
increases with Ω̂  it can be said that the closed system (or the 
universe as called in thermodynamics [13]) is continuously 
evolving from a state of lower to higher number of 
microstates. Or equivalently, from a state of lower to higher 
microstate uncertainty since the probability of any microstate 
(which for our effective model is PS[gi]=1/ Ω̂  for all i) 
decreases in value. In this 2nd law scenario Η will attain the 
highest possible value when the microstates are equally likely, 
i.e., Ω̂ =Ω, and the universe’s thermal energy approaches zero, 
i.e., ET  0, but without quite reaching the zero value because 
the 3rd law of thermodynamics prevents T from being zero. It 
should also be noted that the reason why ET  0 is that the 1st 
law of thermodynamics requires the conservation of the 
universe’s total energy as Η increases in value. In this paper 
the 2nd law of thermodynamics will be renamed the 2nd law of 
source-thermodynamics since the closed system or universe is 
modeled as an information-source, which as noted earlier is 
one of the four universal types of systems. Moreover, the 2nd 
law of source-thermodynamics now states that, “The 
universe’s thermodynamics source-entropy H continuously 
increases.” Finally the ratio of the H intel-space in bit units 
over the ‘time for sourcing’ in SI sec units is the information-
source’s bit-rate. 
 
B. The Lingerdynamics Processor-Ectropy and its 2nd Law: 
Consider the information-processor of quadrant IV of Fig. 2 
which has a vector input y and a vector output z. The 
information-processor is illustrated with a full adder (FA) built 
with two-input NAND gates that has an input y composed of 
the added bits a, b and the carry-in bit cin and generates an 
output z of two bits, i.e., the carry-out bit cout and the sum bit 
s, with a maximum processor-rate RP of 6 bors/[cout s]. The 6 
bors of RP denote the processing intel-time levels which is the 
maximum of the 5 bors for cout and the 6 bors for s. One then 
seeks to determine a replacement for the information- 
processor with a processor-coder which is lossless when its 
output ẑ  is the same as z and is lossy otherwise. The rate of 
this processor-coder is RPC in bors/z units that is less than or 
equal to that of the information-processor RP, i.e. .RR PPC ≤  To 
guide the design of the processor-coder ‘mathematical latency  
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ẑProcessor
Coder

RPC

Processor
Coder
RPC

100 km 100 km

1

1

1

cout
c’in

a’
b’
a’

c’in

b’

1   

1   

1   

1   

c’in
b
a

cin
b’
a

cin
b
a’

c’in
b’
a’

1

1

1

cout
c’in

a’
b’
a’

c’in

b’

1
2

1
2

1
2

1
2

b
a

b’
a c’in

c’in

b
a’

cin

cin

b’
a’

Or

y

III IV

II I

w

ss

Information
Source
RS > H

r = 3 cm

h = 9 cm

Information
Retainer

RR > N Q

G

zInformation
Processor

RP > K

y
61

2

2

3 4

5

5

5

6
s

cout

a
b

cin

Information
Mover
RM > A

ww
100 km

Start
Location
w1 (0 hr)
w2 (0 hr)
w3 (0 hr)

End
Location
w1 (3 hr)
w2 (2 hr)
w3 (3 hr)

RS=8 bits/pixel

H=Source-Entropy A=Mover-Ectropy

N=Retainer-Entropy K=Processor-Ectropy

RR=0.02262 m22222/VTea
RP = 6 bors/z

RM = 3 hr/w

Source
Encoder

RSE

Source
Decoder

RSE=H= 7.44 bits/pixel RSE=0.1036 bits/pixel
Lossless Source-Coder Lossy Source-Coder

Ĝ
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Fig. 2.  Illustration of the LIT Revolution’s Information Systems and Coders with Simple Examples 

theory’ provides the processor-ectropy with symbol K which is 
defined as the minimax processor-latency of the information- 
processor. The value of K then sets for us a lower bound for a 
lossless processor-coder design which for the FA displayed in 
Fig. 2 is given by either 2 or 1 bors/[cout s]. These values were 
found subject to two different constraints: namely, 1) the FA 
gates cannot have more than two inputs; and 2) the FA gates 
can have either 2 or 3 inputs. Three basic assumptions were 
also made: namely, 1) the Boolean expressions for cout and s 
are OR-AND-Invert types [3], i.e.,  

( )( )( )( )( ) ' '''''' inininin cbacbacbacbas ++++++++=      (5) 

( )( )( )( ) ' '''''' ininout cbcabac +++= ;                   (6) 
2) wired logic is used in the implementation of (5)-(6); and 3) 
the inverted inputs a’, b’ and c’in are readily available. Also in 
Fig. 2 the processor-coder is shown for two cases. The first is 
the RPC=K=2 bors/[cout s] for 2-input gates and RPC=K=1 
bor/[couts] for 2 and 3 input gates best lossless cases yielding 
the maximum lossless intel-time compression ratio of 
RP/RPC=3 for 2 input gates and RP/RPC=6 for 2 and 3 input 
gates. The second is the RPC=1 bor/[cout s] ≤ K lossy case 
yielding a significantly simpler implementation with an intel-
time compression ratio of RP/RPC=6 and producing a lossy FA 
that may be satisfactory for some applications. The processor-
ectropy K that guides the processor-coder design is then 
defined as the minimax processor latency 

MaxPPCnPP  K  ChChz,..,LzLK
P

≤=== )ˆ()ˆ(log)]()([max ˆ1
   (7) 

]log[ ][ )h(zCeil)(zL izCiP iP
=                          (8)  

2ˆ)ˆ( KCCh K
PP ==                                   (9)   

where: 1) y=[y1,..,yh] is the processor input vector composed of 
the h bits {y1,..,yh}; 2) z=[z1,..,zn] is the processor output vector 
composed of the n bits {z1,.., zn}; 3) the Boolean expressions 
that relate z to y are OR-AND-Invert types (such as (5) and (6) 
for a FA) that are implemented using wired logic; 4) hzh i ≤)(  
for all i is an integer that denotes the maximum number of 
literals among the OR factors of the OR-AND-Invert Boolean 
expression of zi, e.g., the z2=cout expression of (6) has 

 2)( 2 == outczh since the maximum number of literals for 
the OR factors ( )'' ba + , ( )inca ''+  and ( )incb ''+  is two, and the 

z1= s expression of (5) yields  3)( 1 === hszh using similar 
arguments; 5) CP[zi] for all i is an input-constraint that 
specifies the maximum number of bits that can be operated on 
(or parallel processed) by a logic gate towards the eventual 
generation of zi, e.g., when CP[zi]=1 only inverters and buffers 
can be used to generate zi, while when CP[zi] = 3 only gates 
with 3, 2 and one input can be used; 6) ]rg[ Ceil A  is the 
Matlab function that takes the integer ceiling of the real 
argument Arg; 7) LP(zi) is the processor-latency of zi in 
mathematical bor units (such as the 2 bors for s and the 1 bor 
for cout when CP[s]=CP[cout]=2, note from (8) that 
LP(s)=Ceil[log23]=2 bors and LP(cout)=Ceil[log22]=1 bor); 8) 
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)ˆ( PCh  is the ‘effective’ number of processor input bits and 

PĈ  is the effective maximum number of gate inputs leading to 
2ˆ)ˆ( KCCh K

PP ==  (9) (such as PĈ =2 and )2(h =4 when K=2 for 
the FA of Fig. 2); and 9) KMax is the ‘maximum processor-
ectropy’ that results when the gate input-constraints for all the 
n bits in z are the smallest possible (such as the KMax=2 
bors/[cout s] derived when CP[s]=CP[cout]=2 for the lossless 
processor-coder of Fig. 2, notice that when CP[s]=CP[cout]=3 it 
follows that K=1 bor/[cout s]<KMax). In particular, when h is 
large it follows from (7)-(8) that 

hKK hi Czi,Ch zhMax
PiPi

==
∀→→∀→ large is  1][)(

|lim              (10) 

where h(zi) h for all i (which results when ‘product of 
maxterms’ expressions are found for all the outputs [3]) and 
CP[zi] CP 1 for all i. Moreover, when the number of 
processor inputs h is the same as the HMax bits of an 
information-source the following bridge is derived from (10) 

MaxMax HK =                            (11) 
where HMax is a very large number as required by (10).  
 

When used in statistical-physics problems the 
processor-ectropy K (7)-(9) will be called the lingerdynamics 
processor-ectropy where ‘lingerdynamics’ is the name given 
to the time dual of thermodynamics [14]-[15]. The 2nd law of 
processor-lingerdynamics can now be stated. This law is an 
MLT property that is the LT-certainty dual of the IS-
uncertainty 2nd law of source-thermodynamics that is an MIT 
property. The 2nd law of processor-lingerdynamics states that, 
“The universe’s lingerdynamics processor-ectropy K 
continuously increases.” Finally the ratio of the K intel-time in 
bor units over the ‘one-dimensional space for processing’ in 
SI m units is the information-processor’s bor-rate.  

 
C. The Thermodynamics Retainer-Entropy and its 2nd Law: 
Consider the information-retainer of quadrant III of Fig. 2 with 
the random variable output Q. This information-retainer is 
illustrated with one yielding for Q the displayed cylindrical 
hot-tea thermos with volume VTea =0.0002545 m3 and an 
expected retainer-rate RR of 0.02262 m2/VTea. The 0.02262 m2 

of RR denotes the retention life-space surface area. One then 
seeks to determine a replacement for the information-retainer 
with a retainer-coder which is lossless when its output Q̂  is the 
same as Q and is lossy otherwise. The rate of this retainer-
coder is RRC in m2/VTea units that is less than or equal to that of 
the information-retainer RR, i.e. RRC RR ≤ . To guide the design 
of the retainer-coder ‘physical information theory’ provides 
the retainer-entropy with symbol N which is defined as the 
expected retainer-information of the information-retainer. The 
value of N then sets for us a lower bound for a lossless 
retainer-coder design which for the hot-tea thermos of Fig. 2 is 
given by 0.01942 m2/VTea. Also in Fig. 2 the retainer-coder is 
shown for two cases. The first is the RRC=N best lossless case 
associated with a spherical hot tea thermos and yielding the 
maximum lossless life-space compression ratio of 
RR/RRC=1.1648. The second is the RRC=0.01131 m2/VTea < N 
lossy case yielding the higher life-space compression ratio of 

RR/RRC=2 and producing a lossy hot-tea thermos that may be 
satisfactory in some applications. The retainer-entropy N that 
guides the retainer-coder design is then defined as  

Maxi iRiRR  N  rπ qPqIIEN ≤=== ∑Ω

=
2

1
ˆ4][)(][               (12) 

)(4)( 2
iiR qπ rqI =                                 (13)    

)(2)( 2
iei qGM/vqr =                                (14) 

πN/r 4ˆ =                                     (15) 
where: 1) Q ∈{q1,.., qΩ} is a random variable composed of 
Ω  microstates {q1,.., qΩ}; 2) PR[qi] is the retainer-probability 
of qi; 3) r(qi) is the radius of the smallest possible sphere that 
can retain the volume of qi; 4) IR(qi) for all i is the retainer-
information of qi in physical SI m2 units; 5) M=E/c2 is the 
retained mass-energy modeled as a ‘point mass-energy’ 
located at the center of the r(qi) sphere; 6) ve(qi) is the escape-
speed from the r(qi) sphere with the point mass-energy 
M=E/c2 at its center that is given next for three mediums: first 

    ve(qi) = c                                   (16) 
for all i for a black-hole [9], second 

( )J/qI
T

/////
ie

iS/EM Jπ/Geqv 6)(4346 3252132527 232)( h=     (17) 
for all i for a monatomic ideal gas [14]-[15] where J is the 
number of gas molecules, T is the gas temperature, and ET and 
IS(qi) are the thermal energy and microstate source-
information, respectively, defined by 

TkE BT = ,                                  (18) 
])[1(log2 iRiS q/P)(qI =   for all i,                  (19) 

and third and final  
( )66 33337 )(2ln1352)( iSTie qI/EMc/Gπqv h=       (20) 

for all i for a black body photon gas [24] where M=E/c2 is the 
mass-energy of the medium; 7) r̂  is the IS-uncertainty radius 
of the sphere with surface area N; and 8) NMax is the 
‘maximum retainer-entropy’ that occurs when 

RiR PqP →][ , thus 
2

)(][
4limlim πrNNN

i HqIi PqPMax
MaxiSRiR

===
∀→∀→

         (21) 

22 eGM/vr =                                  (22) 

)( MaxTe ,HM,Efv =                            (23) 
where: a) the microstates of the universe’s information-
retainer are equally likely, i.e., RiR PqP =][  for all i, which in 
turn results in IS(qi)=HMax for all i; b) ev is the escape-speed 
from the universe that is a function of the retained mass-
energy M=E/c2, the thermal energy ET=kBT and HMax (as is 
noted from (17) and (20) where IS(qi)=HMax for all i for the two 
gas mediums), while for the special case of a black-hole it is 
the speed of light (16); and c) r is the IS-uncertainty radius of 
the NMax’s sphere that is inversely proportional to the square of 

ev (22). From expressions (21)-(23) and the escape-speed of 
(17) and (20) with IS(qi)=HMax, it is noted that as HMax 
increases then ET  0, ve 0 and r (22) increases, thus 
resulting in an increased NMax value. This result supports a big-
bang creation theory for the universe that starts in a dominant 
black-hole state with a large ve value (16) and ends in a 
dominant vacuum state with  a small ve value as ET  0 (20). 

When used in statistical-physics problems the 
retainer-entropy N will be called the thermodynamics retainer-
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entropy. The 2nd law of retainer-thermodynamics can now be 
stated. This law is a PIT property that is the observation-
sensor dual of the communication-channel 2nd law of source-
thermodynamics that is a MIT property. The 2nd law of 
retainer-thermodynamics states that, “The universe’s 
thermodynamics retainer-entropy N continuously increases.” 
The ratio of the ‘time for retention’ in SI sec units over the 
volume life-space in SI m3 units is the information-retainer’s 
pace. Finally, the ratio of the time for retention over the N life-
space in SI m2 units is the information-retainer’s surface-pace. 

 
D. The Lingerdynamics Mover-Ectropy and its 2nd Law: 
Consider the information-mover of quadrant I of Fig. 2 which 
has w as both its vector input and output. The information-
mover is illustrated with ‘human powered’ unicycles that 
move from one side of a given circular terrain to its other side 
either along its circumference or diameter. There are three 
moved individuals represented by the w elements w1, w2 and 
w3, with a maximum mover-rate RM of 3 hrs/[w1 w2 w3]. The 3 
hrs of RM denotes the motion life-time duration which is the 
maximum of the 3 hrs for w1 and w3 and the 2 hrs for w2. One 
then seeks to determine a replacement for the information-
mover with a mover-coder (encoder/decoder) which is lossless 
when its output ŵ  is the same as w and lossy otherwise. The 
rate of this mover-coder is the mover-encoder rate RME in 
secs/w units that is less than or equal to that of the 
information-mover RM, i.e. MME RR ≤  To guide the design of 
the mover-coder ‘physical latency theory’ provides the mover-
ectropy with symbol A which is defined as the minimax 
mover-latency of the information-mover. The value of A then 
sets for us a lower bound for a lossless mover-coder design 
which for the example displayed in Fig. 2 is given by 3/4 
hrs/[w1 w2 w3]. This value was found subject to the constraint 
that the movers are unicycles, thus having the least number of 
wheels. Also two basic assumptions were made: namely, 1) 
the movers are either motorized or externally driven in an 
efficient manner; and 2) from start to finish the translational 
speed of each mover is kept constant. Also in Fig. 2 the 
mover-coder is shown for two cases. The first is the RME=A 
best lossless case yielding the maximum lossless life-time 
compression ratio of RM/RME=4. The second is the RME=1/2 
hrs/[w1 w2 w3] < A lossy case yielding the higher life-time 
compression ratio of RM/RME=6 and producing the movement 
of just one individual that may be satisfactory in some 
applications. The mover-ectropy A that guides the mover-
coder design is then defined as the minimax mover latency 

MaxtNMM A  vπr/w,..,LwLA  ˆ)]()(max[ 1 ≤==             (24) 

)(/ )(/)()( itiiiM wvrwvwdwL π==              (25)   

)()( iit wG M/rwv =                           (26) 

πr/Avt =ˆ                                     (27)  

/Gvr M t
2ˆ=                                   (28) 

where: 1) w=[w1,..,wn] is a vector composed of n  elements 
{w1,..,wn}; 2) LM(wi) for all i is the mover latency of wi in 
physical SI sec units (such as the mover latencies of 
LM(w1)=LM(w3)=¾ hrs and LM(w2)=½ hr of Fig. 2 leading to 
A=3/4 hr);  3) d(wi) for all i denotes the distance traveled by wi 

(such as the distances d(w1)=d(w3)=50π km and d(w2)=100 km 
of Fig. 2); 4) v(wi) for all i denotes the constant speed of wi 
(such as the mover speeds v(w1)=v(w3)=50π/(3/4)=200π/3 
km/hr and v(w2)= 100/(1/2)=200 km/hr for Fig. 2). 

The other variables in (24)-(28) relate to statistical-
physics applications where a point mass-energy M=E/c2 is at 
the center of a sphere of radius r (such as r =50 km when the 
circle of Fig. 2 is part of this sphere), exerting a gravitational 
pull on wi, inclusive of its mover, for all i. In particular: 1) wi 
is at the pseudo radial distance rwr i ≤)(  in perpetual, i.e. no 
energy used, circular motion since moving at the tangential 
speed of vt(wi) (26); 2) π r is one half of the sphere 
circumference; 3) vt(wi) is found from (25) with 
vt(w1)=vt(w3)=200π/3 km/hr and vt(w2)=100π km/hr for the 
Fig. 2 case; 4) tv̂  is the vt value on the sphere-surface and is 
200π/3 km/hr for the Fig. 2 case; 5) M is 2.54 x 1015 kg for the 
Fig. 2 case; 6) r(wi) for all i is found from (26) and yields 
r(w1)=r(w3)=50 km and r(w2)=22.22 km for the Fig. 2 case; 
and 7) AMax is the ‘maximum mover-ectropy’ that results when 
r(wi)=r for all i and gives rise to the square root bridge  

24 ttMax v/πNπ r/vA Max==                    (29) 

GM/r/vv et == 2                         (30) 

G M/rve 2=                             (31) 
where: a) NMax is defined by (21); b) ve is the escape-speed 
from a sphere of radius r; and c) vt is the tangential speed of 
any of the objects in w that are now in perpetual circular 
motion on the surface of the sphere since r(wi)=r for all i.  
 

When used in statistical-physics problems the mover-
ectropy A will be called the lingerdynamics mover-ectropy. 
The 2nd law of mover-lingerdynamics can now be stated. This 
law is a PLT property that is the LT-certainty dual of the IS-
uncertainty 2nd law of retainer-thermodynamics that is a PIT 
property. The 2nd law of mover-lingerdynamics states that, 
“The universe’s lingerdynamics mover-ectropy A continuously 
increases”. Finally the ratio of the ‘space for motion’ in SI m 
units over the A life-time in SI sec units is the information-
mover’s speed. 

IV. THE ENTROPY AND ECTROPY BRIDGES 
In this section bridges between entropies and ectropies are 
stated for general, black-hole and ideal-gas mediums. 
A. General Bridges: The general mathematical-intelligence 
bridge (11) and the physical-life bridge (29) are next given in 
quadratic form. They are: 1) the mathematical-intelligence 

2
MaxMax KH =                              (32) 

quadratic bridge from KMax  to H Max; and  2) the physical-life 
/πAvN MaxtMax

224=                          (33) 
quadratic bridge from A Max to N Max with vt given by (30). 
 
B. Black-Hole Bridges: The thermodynamics-entropy for a 
‘spherical’ uncharged nonrotating black-hole (BH) is [9] 

                                G/ΥckS BHBBH h43=                         (34) 
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where BH
MaxBH NΥ =  is its surface area (or retainer-entropy) 

and h  is the reduced Plank constant. Making use of 
22 c//vv et == , (4) and (32)-(34) it follows that 

222 )()()(

           
BH
Max

Bor
Max

BH
Max

Bor
BHBH

Bit
BHBH

Bit
Max

BH
Max

BH
Max

K/AA/MM

/ττ/NNH

===

==                 (35) 

( )222 244 /cGMππ rN BHBH
BH
Max ==                   (36) 

( ) /cχ/cGMπrπN Bit
BH

Bit
BH

Bit
Max 2ln192024)(4 222 ===          (37) 

22c/πNA BH
Max

BH
Max =                                (38) 

22c/πNA Bit
Max

Bor
Max =                                (39) 

3/rχNχVτ BH
BH
MaxBHBH ==                        (40) 

/cr/rχNVχτ BHBH
Bit
MaxBH

Bit
BH 2ln6403Δ ===                 (41) 

G/cχ h2480= =6.1123 x 1063   sec/m3              (42) 
where: 1) equation (35) is the BH bridge; 2) rBH, VBH and MBH 
are the radius, volume and point mass-energy of the spherical 
BH; 3) χ is the pace of dark of the uncharged nonrotating BH 
[8] that is the space dual of the speed of light in a vacuum c; 
4) BH

MaxN , BH
MaxA  and BHτ  are the BH’s NMax, AMax and lifespan; 

5) Bit
MaxN , Bor

MaxA  and Bit
BHτ  are the NMax, AMax and lifespan of 

activity (or motion) of the bit BH point mass-energy Bit
BHM ; 6) 

Bit
BHr  is the radius of the bit Bit

MaxN ’s sphere; and 7) ΔVBH is the 
incremental BH volume released from retention for 

Bit
BHM activity during Bit

BHτ . 
 
C. Ideal-Gas Bridges: The thermodynamics-entropy for an 
ideal-gas (IG) is given by [14]-[15] 

( )P
c

IGBBH c/JBTVJkS V += )(ln ,                    (43) 
B=T3/2X3/g,                                (44) 

πT/mk/X B 2h=                              (45) 
where cV and cP are the dimensionless volume and pressure 
heat capacity constants, respectively, J is the number of gas 
molecules, VIG is the gas volume, T is the gas temperature, B 
is an undetermined gas constant with the SI units of Vc

IGTV , h  
is the reduced Plank constant, X is the thermal de Broglie 
wavelength, and g is the microstate degeneracy of appropriate 
SI units, with g=1 for a monatomic gas. Making use of 

2/vv et = , (4), (32), (33) and (43)-(45) it follows that  
(

) 222
2

)()Δ()Δ(

ΔΔlog    
IG
MaxMax

IG
MaxIGIG

IGIGMax
IG
Max

IG
Max

KA/AM/M

τ/τN/NJH

===

==               (46) 

( )222 244 eIGIG
IG
Max /vGMππ rN ==                       (47) 

( ) Πα/v/vMGπrπN eeIGIGMax 3Δ24 4 222 ==Δ=Δ              (48) 
22 e

IG
Max

IG
Max v/πNA =                             (49) 

22ΔΔ eMaxMax v/NπA =                            (50) 

IGIG ΠVτ =                                    (51) 

eIGIGMaxIGIG /vα r/rNΠVΠτ === 3ΔΔΔ           (52) 

IGIGe /rGMv 2=                           (53) 
323253323 )(163Δ e

/
T

/
IG

/
IG  vE/JeMσπG/πM h=            (54) 

2325 /c/c VP Tgeσ −−=                           (55) 

                       ( ) 32 3Δ24 eIG vΠ/MGπα =                          (56) 
where: 1) equation (46) is the IG bridge; 2) rIG, VIG and MIG 
are the radius, volume and point mass-energy of a spherical 
IG; 3) Π is the IG pace and ve is the escape speed from the IG; 
4) IG

MaxN , IG
MaxA  and 

IGτ  are the IG’s NMax, AMax and lifespan; 
5) ΔNMax, ΔAMax and ΔτIG are the NMax, AMax and lifespan of 
activity of the incremental IG point mass-energy ΔMIG; 6) ΔτIG 
is the radius of the incremental ΔNMax‘s sphere; 7) ΔVIG is the 
incremental IG volume released from retention for ΔMIG  
activity during ΔτIG; 8) ET=kBT is the thermal energy of the 
gas; and 9) σ and α are dimensionless constants.  
 
D. Further General Bridges. A comparison of the black-hole 
bridge (35) and the ideal-gas bridge (46) reveals the following  

22 )Δ()Δ(ΔΔ MaxMaxMaxMax A/AMM/ττ/N/N ===       (57) 
physical-life bridge that appears to apply to general mediums. 

V. THREE  LIT DUALITY APPLICATIONS  
A. On lifespan duality theories. In [14] and [15] some of the 
previously discussed physical-life LIT bridges have been 
successfully applied to lifespan studies [16]. In particular,  

2)Δ(Δ MM/ττ/ =                            (58) 
can be used to make lifespan predictions for humans where τ 
is the average future healthy life-time of an 18 year old human 
whose growth has just ended, M is the human’s mass, and ΔM 
is the mass of the digested food during the time duration Δτ 
(such as the 86,400 seconds for a single day). For instance, 
when M=70 kgs and ΔM=0.4 kgs (or 2,000 kcal/day) an 
average future healthy life-time of τ=83.9 years is predicted, 
for a lifespan for the 18 years old of 101.9 years, which is 
reasonable since the maximum lifespan for humans is over 
120 years [14]. Another physical-life bridge of interest is 

ττ Δ= /Δ MaxMax A/A                        (59) 
that relates the square root of the human age τ  per sensed Δτ 
to the processing mover-ectropy ratio AMax/ΔAMax, which may 
lead to a satisfactory explanation as to why any sensed Δτ  
appears to pass faster as we age, i.e., as τ increases [25]. 
 
B. On the origin of gravity and other forces. Recently it has 
been prominently reported that the origin of the gravitational 
force is emergent entropic [17], thus its previous ‘fundamental 
in nature’ status has been seriously challenged. This entropic 
origin is inherently supported by LIT via an IS-uncertainty 
TRE (or N) based derivation, which can be further extended to 
other forces previously identified as being fundamental in 
nature. In this N-based derivation it is first noted that for both 
the Newton gravitational force 

2
21 LTC

LTC
G /rMGMF =                           (60) 

and the Coulomb electrical force 
2

21 LTCE
LTC

E /rQQkF =                            (61) 
where M1 and M2 are two different point mass-energies, kE is 
the Coulomb constant, and Q1 and Q2 are two different point 
charges, the space distance rLTC between the mass-energies 
and the charges is non-emergent LT-certainty (LTC) rather 
than emergent IS-uncertainty (ISU) as a space variable should 
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be. Second and last, the N-emergent IS-uncertainty r̂  of (15) 
substitutes rLTC in (60)-(61) to yield the gravitational and 
electrical emergent entropic forces given by 

/NMπGMF ISU
G 214=                          (62) 

/NQQπkF E
ISU

E 214= .                         (63) 
These results further suggest that entropic definitions can also 
be derived for the electromagnetic, weak and strong forces. 
 
C. On the creation and evolution of the universe. The LIT 
revolution presents vacuums and black-holes as dual mediums 
that offer the least resistance to the motion and the retention of 
mass-energy, respectively, with the maximum speed of light c 
found in a vacuum and the maximum pace of dark χ in a 
black-hole [8]. Moreover, while in the theoretical side 
retention-black-hole space-evolutions were revealed in [8] as 
the space dual of motion-vacuum time-evolutions (or 
dynamics), in the practical side supermassive black-holes have 
been observed to have a significant gravitational impact on the 
space-time evolution of the galaxies [20]. It is thus possible 
that the dark-matter in physics that enables the universe’s 
galaxies to be tightly bound (or retained) and whose 
hypothesized particles remain undetected [19], may just be a 
retention-black-hole-gravity effect, while the dark-energy in 
physics that enables the universe’s expansion (or motion), 
inclusive of its big bang, may just be a motion-vacuum-energy 
effect as noted in [18]. Consequently, the theory is advanced 
that a motion-vacuum-energy/retention-black-hole-gravity LIT 
duality is the catalyst and glue of the universe’s creation and 
evolution through time and across space. 
 

VI. CONCLUSIONS  
In this paper latency-information theory or LIT guided us to 
the discovery of the processor-ectropy and mover-ectropy of 
lingerdynamics that are the time duals of the source-entropy 
and retainer-entropy, also novel, of thermodynamics. The 
classical 2nd law of thermodynamics was further enhanced and 
now states that the universe’s two entropies, rather than just 
one, continuously increase. Moreover, its time dual, i.e., the 
2nd law of lingerdynamics, has been revealed and states that 
the universe’s two ectropies also continuously increase. In 
addition, discovered ectropy-entropy bridges for different 
physical mediums led us to the discovery of a lifespan duality 
theory that when applied to humans predict a lifespan that is 
reasonable. Also, IS-uncertainty retainer-entropy based 
gravitational and electrical force derivations were advanced 
that presented these forces as emergent entropic rather than 
fundamental in nature. These results further suggest that 
entropic definitions can also be derived for the 
electromagnetic, weak and strong forces. LIT also led us to the 
theory that the universe’s unexplained dark-energy and dark-
matter can be explained as a motion-vacuum-energy/retention-
black-hole-gravity LIT duality. A final note is that LIT has 
unveiled a powerful duality language for the efficient 
communication and observation of scientific ideas, whose 
strength resides in its roots being firmly anchored on 
information theory, statistical-physics and the structural and 
physical LT-certainty/IS-uncertainty dualities of space-time. 
 

REFERENCES 
 

1. Feria, E.H., “Matched processors for quantized control: A   practical 
parallel processing approach,” International Journal of Controls, vol. 
42, issue 3, pp. 695-713, Sept. 1985. 

2. Guerci, J.R.  and  Feria,  E.H., “Application  of  a  least  squares 
predictive-transform   modeling   methodology   to  space-time  adaptive 
array processing,” IEEE Trans. On Sig. Proc., pp.1825-1834, July 1996. 

3. Mano,  M.M  and  Ciletti,  M.D.,  Digital   Design, 4th Ed., 2007. 
4. Feria, E.H., “Latency-information theory: A novel latency  theory 

revealed   as   time-dual  of  information   theory”, Digital Signal 
Processing Workshop and 5th IEEE Signal Processing Education 
Workshop, DSP/SPE 2009, IEEE 13th, pp. 107-112, FL, 4-7 Jan. 2009. 

5. Shannon, C. E., “A mathematical theory of communication”, Bell  
System Tech. Jur., vol. 27, pp. 379-423, 623-656, July, Oct., 1948. 

6. Feria, E.H., “Predictive transform estimation”, IEEE Trans. On Sig. 
Proc., pp. 2481-2499, Nov. 1991. 

7. Thornton, S.T. and Marion, J.B., Classical Dynamics of Particles and 
Systems, 5th ed., Brooiks/Cole, 2004.  

8. Feria, E.H., “Latency information theory and applications, Part III: On 
the discovery of the space dual for the laws of motion in physics”, SPIE 
Def. Sec. and Sen, vol. 6982-38, pp. 1-18, Apr. 2008. 

9. Lloyd, S., “Ultimate physical limits to computation”, Nature, Aug. 2000. 
10. Feria, E.H., “Matched Processors for Optimum Control”, PhD 

Dissertation, City University of New York (CUNY), August 1981. 
11. Feria, E.H., "On a nascent mathematical-physical latency information 

theory, Part I: The revelation of powerful and fast knowledge-unaided 
power-centroid radar", SPIE Def. Sec. and Sen. 2009, vol. 7351-29, pp. 
1-18, Orl., Fl., April 14, 2009. 

12. Guerci, J.R. and Baranoski, E., “Knowledge-aided adaptive radar at 
DARPA”, IEEE Sig. Proc. Magazine, pp. 41-50, January 2006. 

13. Atkin, P., Four laws that drive the universe, Oxf, U. Press, 2007. 
14. Feria, E. H., “Latency information theory: The mathematical-physical 

theory of communication-observation”, IEEE Sarnoff 2010 Symposium, 
Princeton, New Jersey, pp. 1-8, 12-14 April 2010. 

15. Feria, E. H., “The latency information theory revolution, Part II: Its 
statistical-physics bridges and the discovery of the time dual of 
thermodynamics”, SPIE Def. Sec. and Sen. 2010, vol. 7708-30, pp. 1-22, 
Orl., Fl., 4-6 April, 2010. 

16. Silva, C. A. and Annamalai, K, “Entropy generation and human aging: 
lifespan entropy and effect of physical activity level,” Entropy, vol. 10, 
no. 2, pp. 100-123, 2008. 

17. Siegfield, T, “A new view of gravity: Entropy and information may be 
crucial concepts for explaining roots of familiar force”, Science News, 
25 Sept., 2010.  

18. “Einstein’s biggest blunder? Dark energy may be consistent with 
cosmological constant”, Science daily, 28 Nov. 2007. 

19. “New data still have scientists in dark over dark-matter”, Science daily, 
8 June 2011. 

20. “Dwarf galaxy harbors supermassive black hole”, Science daily, 10 Jan. 
2011. 

21. Athans, M., "The role and use of the stochastic Linear-Quadratic-
Gaussian problem in control system design". IEEE Transaction on 
Automatic Control AC-16: pp. 529–552, 1971. 

22. Wozencraft, J.M. and Jacobs, I.M., “Principles of communication 
engineering,” Waveland Press, Inc. 1965. 

23. Feria, E.H., “Predictive transform source coding with subbands”, 2006 
IEEE Conf. on Systems, Man and Cybernetics, pp. 1512-1518, Taipei 
Taiwan, 8-11 Oct. 2006.  

24. Carter, A.H., Classical and statistical thermodynamics, Pr. Hall, 2001. 
25. Maudlin, T., Truth and paradox: Solving the riddles, Oxford University 

Press, 2004. 
26. Feria, E.H., “On the novel space-time duality language of Latency 

Information Theory”, SPIE Def. Sec. and Sen.2011, Orl. Fl., April 2011.  
27. In http://feria.csi.cuny.edu some of the author’s papers are available. 
28. The three anonymous reviewers of this paper are gratefully acknowledged. 


