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Abstract — In this paper the entropy of a flexible 
phase (FP) medium (referred as FP entropy) emerges 
from a novel linger thermo theory (LTT) and then used 
in a biological lifespan study. LTT is the ‘dynamic 
metrics’ dual of the ‘stationary metrics’ latency 
information theory (LIT). These two nascent theories 
are synergistic time/space designs of the universal 
cybernetics duality (UC duality), first identified in 
linear quadratic Gaussian (LQG) control in 1978. While 
LIT has already yielded outstanding solutions for high-
performance radar, LTT has done the same for 
biological lifespan, with both holding US patents. The 
FP entropy equation is found here subject to a constant 
internal mass-energy constraint of LTT that reflects 
actual gravitational/non-gravitational interactions of 
atoms or molecules. Moreover, this approach is revealed 
to contain a degrees of freedom (DoF) coupling constant 
that when multiplied by the heat capacity of liquid 
water at 310 K in thermal equilibrium accurately 
models the heat capacity of the human medium in its 
non-equilibrium thermal state. The use of the DoF 
coupling constant mechanism has been found to result 
in outstanding theoretical adult lifespan predictions that 
are directly linked to an individual’s heat capacity. 
These sensible results compel the view that the FP 
entropy approach will find broad use in future 
biophysical chemistry of lifespan studies.   
 
Keywords — thermodynamics entropy, lingerdynamics ectropy, 
information entropy, latency ectropy, statistical physics, biophysical 
chemistry, lifespan, cosmology, certainty, uncertainty, unification  

 
I. INTRODUCTION 

Life science studies often require the availability of a 
reliable as well as simple mathematical model for the 
entropy of biological mediums for use in accurate 
assessments. One area of research where such a model is 
highly desirable is in human lifespan studies where lifespan 
predictions from such a model can be used by medical 
professionals and the insurance industry. An entropy model 
that because of its simplicity has been utilized in the past to 
make such predictions [1] is that for an ideal gas [2]. 
Unfortunately, however, the predictions derived with such a 
model are often unreliable because the internal energy 
associated with the classical ideal gas entropy (IG entropy) 
expression only reflects the kinetic energy and potential 
energy of the atoms or molecules in a gas medium. Thus, if  
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Figure 1. Summary of universal cybernetics duality 
development 

 
such a model is used to describe the entropy of a biological 
medium  such  as  our  own  where  more  than  98%  of our 
molecules are of liquid water at an approximate 
temperature of 310 K, it would fail to model the 
gravitational/non-gravitational interactions between the 
molecules of water in its liquid phase. As a result there is a 
need for a simple entropy model, such as the IG entropy 
one, which reflects gravitational/non-gravitational 
interactions between atoms or molecules and thus may be 
used to better describe the entropy of biological mediums. 
This is the problem addressed here. 

In this paper the entropy of mediums with an arbitrary 
phase will be modeled by a novel flexible phase entropy 
(FP entropy) that is both surprisingly simple in its form (it 
is similar to that of the IG entropy), and is remarkably 
accurate in its theoretical predictions of biological lifespan. 
This entropy approach will be shown to inherently emerge 
from a novel linger thermo theory (LTT) [3], one of two 
synergistic time/space designs of the universal cybernetics 
[4] duality (UC duality), see Fig. 1. This duality theory that 
enables efficient system designs is now briefly surveyed.  

 
The UC duality was first identified by the author in 1978 

in linear quadratic Gaussian (LQG) control [5] stating that, 
 

“Synergistic physical and mathematical dualities 
 naturally arise in efficient system designs” 
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More specifically, the “physical duality” conveyed the 
separation of the system design into a space-uncertainty 
communication problem (Kalman filter design in LQG) and 
a time-certainty control problem (linear quadratic controller 
design in LQG), while the “mathematical duality” 
conveyed the appearance of identical mathematical 
structures (Ricatti design equations in LQG) in the 
separately designed communication and control 
subsystems. The discovery of the UC duality first led to 
“Matched Processors (MPs) for Optimum Control”, the 
author’s 1981 Ph.D. [6], see Fig. 1. While LQG dealt with 
continuous control, MPs dealt with quantized control. In 
MPs the certainty-based parallel structures of the MPs 
controller were the control’s certainty-based time dual of 
communication’s uncertainty-based parallel structures of 
Matched Filters for bit detection [7]. A remarkable result of 
Matched Processors [8] was that unlike Bellman’s Dynamic 
Programming [9], it did not suffer of what Bellman called 
“the curse of dimensionality” when referring to the 
exponential increase in computational burden as the process 
state dimension increased in value.  After the application of 
the UC duality to quantized control it was not until much 
later in the mid 2000s when Defense Advanced Research 
Projects Agency (DARPA) funded research on high-
performance knowledge-aided (KA) adaptive radar [10] led 
the author to discover the time-certainty dual of space-
uncertainty information theory [11], that he named latency 
theory [12]. Later the time-certainty dual of space-
uncertainty thermodynamics was also revealed and named 
lingerdynamics [1], [13]. These theories were then merged 
to yield the time/space synergistic latency information 
theory (LIT) and LTT where each addressed four different 
types of system functions. These four functions were: 1) a 
“source” uncertainty function measured by a source 
entropy space-metric (this metric was the Shannon’s “info-
source” entropy in LIT and the Boltzmann’s “thermo-
source” entropy in LTT [14]); 2) a “processor” certainty 
function measured by a novel processor ectropy time-
metric (ectropy is the time dual of entropy); 3) a “retainer” 
uncertainty function measured by a novel retainer entropy 
space-metric; and 4) a “mover” certainty function measured 
by a novel mover ectropy time-metric. While the units of 
the source and processor metrics were mathematical, i.e., in 
binary digit (bit) and binary operator (bor) units, 
respectively, the units of the retainer and mover metrics 
were physical, e.g., in square meters (m2) and seconds 
(sec), respectively. Yet the nature of the LIT and LTT 
space/time metrics is quite different. In the case of LIT they 
are time invariant, or stationary in nature, while in the LTT 
case they are time varying, or dynamic in nature. The LTT 
dynamic property has roots in one of the four laws of 
thermodynamics [14], or more specifically, the 2nd law of 
thermodynamics implying that the Boltzmann entropy (or 
equivalently the thermo-source entropy space-metric) 
increases with time for a closed system. It can be further 

shown that similar increases occur to the remaining LTT 
space/time metrics with the passing of time [13]. In the case 
of LIT it was first applied to radar design [10], [15], [16] 
where it yielded a fast and powerful approach to radar that 
can be either KA or knowledge-unaided (KU) and emulated 
the signal to interference plus noise ratio (SINR) 
performance derived with high-performance KA adaptive 
radar, a surprising result [17].  

 
On the other hand, for the LTT case a universal linger 

thermo equation (ULTE) was derived [3], given in Section 
III, that combines “physical” operating ratios (such as the 
mass ratio M/ΔM where M is the mass of the medium and 
ΔM is a quantum of operation (QoO) of the mass, and the 
lifespan ratio τ/Δτ where τ is the “lifespan of thermo bits of 
interest or life-bits” in the medium and Δτ is a QoO 
lifespan) to yield a lifespan theory for biological systems 
that is based on the “quadratic lifespan equation” τ/ Δτ 
=(M/ΔM)2. For example, this theory predicts for an 
individual weighting M=70 kg and with a nutritional 
consumption rate (NCR) of 1,841 kcal per day (or 
ΔM=0.3628 kg of food per day) with Δτ =1 day=1/365 
years a theoretical adult lifespan (τ ) of 102 years where 
NCR is noted to be a macro physical metric. Moreover, 
when 18 years of childhood are added to τ  it yields 120 
years of lifespan. Also, if the mass M of the individual is 
kept constant, the quadratic lifespan equation has the NCR 
controlling the individual’s lifespan. For example if the 
individual’s NCR is increased from 1,841 to 2,827 kcal per 
day his/her theoretical adult lifespan would be decreased to 
42 years for a total of 60 years when 18 years of childhood 
are added. This is a reasonable result since a higher NCR 
should lead to an increased “metabolic strain” expected to 
result in the individual aging at a faster rate [18]. 

 
In the ULTE the relationship between the aforementioned 

“physical” operating ratios and “mathematical” quantities 
such as the thermo-source entropy and the linger-processor 
ectropy metrics are not explicitly stated since they depend 
on the entropy expression for the medium. In the case of 
black holes and photon gases these entropies have been 
previously derived [3], but not for flexible phase mediums 
which is done here. The flexible phase entropy or FP 
entropy will be readily derived by altering the ideal gas 
entropy expression [2] such that it satisfies an internal 
mass-energy LTT regulation constraint stated in Section II. 

 
The FP entropy approach is advanced in Section III and 

then its rationality established by showing that it leads to 
sensible theoretical adult lifespan or τ predictions. These 
predictions are based on a degrees of freedom (DoF), a 
micro mathematical metric, coupling constant (η) [19], 
conveying the non-equilibrium thermodynamics state of the 
medium. For instance, when η is 0.66 a τ of 102 years is 
predicted (with τ increasing as η decreases in value) for a 



 3

70 kg individual whose medium is modeled as liquid water 
at a 310 K temperature and DoF equal to 6.  

 
The lifespan prediction approach of the LTT FP entropy 

method is expected to find broad use in future biophysical 
chemistry of lifespan studies/applications. This is the case 
since as mentioned earlier gravitational/non-gravitational 
interactions of atoms or molecules are the rule rather than 
the exception for just about all kinds of mediums.  

 
The paper organization is as follows. In Section II LTT is 

reviewed with its metrics defined. In Section III the LTT 
metrics are combined to yield the ULTE which is then 
illustrated for three mediums. In Section IV the FP entropy 
and IG entropy expressions are contrasted. In Section V the 
flexible phase ULTE is applied to a human lifespan study. 
A summary and conclusions section ends the paper.  

 
II. LINGER THERMO THEORY 

 
In this section LTT is reviewed with the two entropy and 
two ectropy metrics of its four system functions defined.  

LTT studies mediums whose mass-energy: 
 E=Mc2                                   (1) 

is regulated, i.e., it is kept constant, while interacting with 
its surroundings via black body radiation [3]. M denotes the 
medium mass, c the speed of light in a vacuum and E the 
the total medium energy. In addition, LTT assumes that the 
medium volume has a minimum expected surface area of 
interaction with its surroundings which in turn defines a 
sphere of radius (r). As a result LTT is characterized by the 
most efficient type of mass-energy interface between the 
medium and its surroundings. Finally, the total mass-energy 
of the medium is assumed to act as a point mass located at 
the center of the LTT’s spherical volume. In this way the 
perpetual rotational speed (v) of a particle on the sphere’s 
surface as well as its escape speed (ve) are described 
according to: 

rGMv /2 =                              (2) 
rGMve /22 =                             (3) 

and 
vve 2=                                (4) 

where G is the gravitational constant and (4) is the v to ve 
coupling equation. 
 

In LTT four different kinds of system functions 
characterize all mediums. Two are “thermal-uncertainty 
space” types and the remaining two are “linger-certainty 
time” types. While the two thermal functions pertain to the 
“sourcing and retention” of mass-energy that are measured 
with two entropy metrics, the two linger functions pertain 
to the “processing and motion” of mass-energy that are 
measured with two ectropy metrics.  

The two thermo entropies and the two linger ectropies are 
defined as follows: 
 
A. The Boltzmann thermo-source entropy 

 The Boltzmann thermo-source entropy ( Ĥ ) denotes the 
“amount of thermal-uncertainty bits” of the system 
microstates according to the following “expectation 
uncertainty metric” (in mathematical bit units): 

2ln/log][])[/1(logˆ
21 2

ˆ kSPPH iii
H =Ω== ∑Λ

=
μμ      (5)                  

where ĤΛ  is the number of realizations of a microstate μi 
(describing a microscopic configuration of a 
thermodynamics system occupied with probability P[μi] in 
the course of thermal fluctuations). The expression 
log2(1/P[μi]) denotes the “amount of thermal-uncertainty 
bits” associated with μi. In addition, log2(1/P[μi]) denotes 
the smallest possible number of thermal-uncertainty bits for 
μi. Moreover, Ω in Ω= 2logĤ  denotes the ‘effective’ 
number of equally likely microstate realizations resulting in 
Ĥ . When the microstates are equally likely it follows that 

Ω  and ĤΛ  would be the same. Finally, Ω= 2logĤ  

2ln/ kS=  linearly relates Ĥ  to the Boltzmann “statistical” 
thermodynamics entropy (S) and constant (k), both in 
Joules/K units [3].  
 
B. The thermo-retainer entropy 

The thermo retainer entropy ( N̂ ) denotes the “amount of 
thermal-uncertainty square meters” of the system 
microstates according to the following “expectation 
uncertainty metric” (in physical SI m2 units): 

2
1

2 4][4ˆ ˆ rPrN ii i
H πμπ == ∑Λ

=
                     (6)                  

where ĤΛ  is the number of realizations of a microstate μi 

and ir  is the radius of the sphere whose shape the μi 
volume is expected to assume. The expression 24 irπ  
denotes the “amount of thermal-uncertainty square meters” 
corresponding to the surface area of the μi sphere. In 
addition, 24 irπ  denotes the smallest possible thermal-
uncertainty surface area that an arbitrarily shaped volume 
for μi could have, i.e., that of a sphere. Finally, r in 4πr2 
denotes an average radius for all the microstate spheres.  
 
C. The linger-processor ectropy 

The linger-processor ectropy ( K̂ ) denotes the “amount of 
linger-certainty bors” of the system microstates according 
to the following “minimax certainty metric” (in 
mathematical bor units):  

 hhhK
HH

CC == ΛΛ
}log,..,max{logˆ

ˆˆ1 ][1][ μμ
               (7) 
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where ĤΛ  is the number of realizations of a microstate μi, 

ih is the number of bits for processing under μi and C[μi] is 
a “constraint” on the maximum number of inputs that a 
basic mathematical operator (or physical gate) can have 
under μi. The expression iC h

i ][log μ  denotes the “amount of 

linger-certainty bors” associated with μi where the 
approximation iiC hh

i
≅][log μ  holds when C[μi] 

approaches the value of one and hi is a very large number. 
In addition, iC h

i ][log μ  denotes the smallest possible 

amount of linger-certainty bors of processing under μi, see 
[13] for the derivation of the iC h

i ][log μ  expression and its 
illustration using a simple full adder example [21]. Finally 
under the condition iiC hh

i
≅][log μ  for all i the h in 

hK =ˆ  denotes the maximum number of thermo-bit inputs 
linked to the microstate realization whose number of linger 
bors is the same as K̂ .   
 
D. The linger-mover ectropy 

The linger-mover ectropy ( Â ) denotes the “amount of 
linger-certainty seconds” of the system microstates 
according to the following “minimax certainty metric” (in 
physical SI sec units):  

        vrvrvrA
HH

/}/,..,/max{ˆ
ˆˆ11 πππ == ΛΛ

               (8) 

where ĤΛ  is the number of realizations of a microstate μi 
and ir  is the expected radius of the sphere where μi resides 
when the expected shape of its volume is that of a sphere. 
The expression ii vr /π  denotes the “amount of linger-
certainty seconds” corresponding to one half of a circular 
rotational motion on the surface of a sphere of radius ir  

with iv denoting the rotational speed of motion in μi. In 
addition, ii vr /π  denotes the smallest possible linger-
certainty seconds for rotational motion since iv  is the 
largest possible in value [13]. Finally r and v in Â =πr/v 
denote the average radius and average rotational speed for 
all microstate spheres, respectively. 
 

III. UNIVERSAL LINGER THERMO EQUATION 
 

In this section the LTT metrics (5)-(8) are combined to 
yield the universal linger thermo equation or ULTE which 
is then illustrated with black hole, photon gas and flexible 
phase mediums. The entropies (5) and (6) and the ectropies 
(7) and (8) when combined produce the ULTE which is a 
“general medium operational expression” according to [3]: 

(9)     ˆ
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where gMed is a function of the medium under study and 
relates the source/processor metrics pair )ˆˆ( K,H  
(characterized by mathematical units) to dimensionless 
operating ratios of physical variables, inclusive of the 
retainer/mover metrics pair )ˆˆ( A,N . An example of a 
dimensionless operating ratio is M/ΔM with M=E/c2 
denoting the mass-energy of the medium (whose value is 
regulated to remain constant) and ΔM is a QoO mass 
representing an active or operating portion of M. The 
following three relationships are next highlighted regarding 
the ULTE: 
 

1) The “mathematical units” entropy/ectropy equation:  
2ˆˆ KH =                                   (10)                

that surfaces from (7) when h is replaced with Ĥ .    
2) The “physical units” entropy/ectropy relationship 

(augmented with additional physical variables): 

π
τπππ

222

2

3
2

ˆ43433/434ˆ Av
rv

GM
r
V

r
rrN =

Π
=⎟

⎠
⎞

⎜
⎝
⎛====   (11)                 

that surfaces from the use of: a) the equations for the 
thermo-retainer entropy (6) and the linger-mover ectropy 
(8); b) the equation for the perpetual rotational speed (2); 
and c) the equation for the “life-bits pace (Π)” defined 
according to (in SI sec/m3 units):  

NrV ˆ/3/ ττ ==Π                          (12)                 
where τ is the retention time of “thermo-bits of interest or 
life-bits” that defines a portion of the medium that leaves 
its expected spherical volume (V) via black-body radiation 
under the assumption that it never returns to once again 
perform its original “life-bit” function (with the caveat that 
its mass-energy is fully recovered from the medium’s 
surroundings since E=M/c2 is regulated in LTT to have a 
constant value). An example of “life-bits for a non-living 
system” are the thermo-bits of some compressed synthetic 
aperture radar (SAR) image residing in a medium that also 
contains the thermo-bits of the source-coder that derived 
the image [10]. Another example is of “life-bits for a living 
system” responsible for the day to day survival of an 
organism in a medium that also contains the thermo-bits 
that give the organism structure.  

3) The following “physical units” QoO composite 
expression: 

(13)   
ˆ43433/434ˆ
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that is the QoO version of (11). 
 

The ULTE is now stated for black hole, photon gas and 
flexible phase mediums. 
 
A. The Black Hole ULTE  

The black hole (BH) ULTE is given according to [3]: 
2
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where all the variables in (14)-(21) were either implicitly or 
explicitly defined earlier in (1)-(13) except for: a) TBH 
denoting the temperature of the black hole; b) h denoting 
the reduced Planck constant; c) χ denoting “pace of dark in 
a black hole” [3] (χ is the retention dual of motion’s “speed 
of light in a vacuum”, noted from (18) to be the ratio of the 
duration of life-bits in the black hole (τΒΗ) over its initial 
volume VBH—with all the thermo-bits in this volume 
assumed to be life-bits, i.e., thermo-bits of interest); and d) 

1=
Δ◊ LB

BH
E τ  denotes the quantum of radiation (QoR) energy of 

the “single” life-bit emitted during the black hole QoO 
lifespan ΔτBH  (19), see [13] for the derivation of (21). 
 
B. The Photon Gas ULTE 

The photon gas (PG) ULTE is defined according to [3]: 
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where all the variables in (22)-(25) were earlier defined, 
and when applicable are appropriately redefined in the 
context of a photon gas medium [3]. 
 
C. The Flexible Phase ULTE 

The flexible phase (FP) ULTE is defined according to: 
2
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1/ =
ΔΔΔ ◊◊= LBLBLB

BH
EEN τττ

                          (36)                 

where: 1) q=qΕqTqRqv is the molecular partition function [2] 
with qΕ, qT, qR and qv denoting electronic, translational, 
rotational and vibrational motion factors (these functions 
are defined by (29)-(32) with the stated approximations 
assumed to hold for water molecules with E

0ε denoting the 
electronic ground energy state assumed equal to 5kT/2, I is 
the moment of inertia of molecular rotation assumed to be 2 
x 10-47 kgm2, σ is the symmetry number of the molecule, 
equal to 2 for water, and v is the vibrational frequency of 
water assumed equal to 1.5 x 109 Hz); 2) g is dimensionless 
and denotes the degeneracy of the ground energy state, 
assumed one for water; 3) T denotes the medium 
temperature, e.g., T=310 K for liquid water (this special 
medium will be used here to model that of a 70 kg 
individual since more than 98% of our molecules are of 
water which together contribute to more than 65% of our 
total mass); 4) m denotes the mass of a “massive particle” 
such as an atom or molecule, e.g., m=3 x 10-26 kg for a 
water molecule; 5) η is a DoF coupling constant [19] 
reflecting non-equilibrium thermal conditions for the 
medium that acts as a compression factor on the DoF of the 
medium at thermal equilibrium; 6) cV(η) is the constant 
volume heat capacity of the medium at its ‘non-equilibrium 
thermal state’ that yields cV when η=1, derived from (34), 
with cV corresponding to the special case when the medium 
is in its ‘equilibrium thermal state’, e.g., for our running 
example cV=3 for liquid water at 310 K; 7) α is an 
appropriately selected constant, e.g., α=1.11 for our 
running example where one derives τ=102 years when 
η=0.66 (resulting in cV(η)=2.49 for the heat capacity of a 
human, a reasonable result), and τ=42 years when 
η=0.6698 (resulting in cV(η)=2.5047, a higher heat capacity 
value associated with an increased metabolism and 
decreased lifespan, and also linked to increased body heat 
while both T and M are kept at constant levels); 8) cV(η)kT 
denotes the energy of a theoretical thermal-energy particle 
(named here a “thermote”), e.g., cV(η)kT=1.0657 x 10-20 
Joules for our running example where cV(η)=0.66 (as a 
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means of comparison the energy of an electron is of 8.187 x 
10-14 Joules); 9) E=Mc2 is the “internal mass-energy” of the 
medium, e.g., for 70 kg of water, i.e., M=70 kg,  one derives 
E=6.28 x 1018 Joules (as a means of comparison the 
internal energy (U) for an ideal gas model, which unlike the 
LTT flexible phase model does not include the medium 
mass-energy, is given by U=cVkTM/m=108 Joules when 
T=1045 K and the cV, M and m values are those for our 
running example); 10) J=E/cV(η)kT is the number of 
thermote particles in E, e.g., J=5.9032 x 1038 and Jαη=2.533 
x 1028 for our running example (where it is noted that the 
negative logarithmic term Jln(1/Jαη) = - Jln(Jαη) appearing 
in (28) denotes a S/k decrease reflecting the 
indistinguishability of J thermotes while organized in 
subgroups linked to atoms or molecules); 11) Q is the QoO 
heat energy entering the medium during Δτ; e.g., Q=7.5825 
x 106 Joules for a human consuming 1,814 kcal per day 
where  Δτ=1 day and the conversion factor of μ=4.18 
Joules/cal is used; 12) ΔS=Q/T is the Classius entropy [14] 
contributed to the medium at temperature T by Q during 
Δτ; e.g., ΔS=2.446 x 104 Joules/K for our example; 13) 

μ /ΘQM =Δ  is the QoO mass equivalent for the energy 
Q that is expressed as the ratio of Q to the product of Θ and 
μ with Θ =5,000 kcal/kg and μ=4.18 Joules/cal for our 
running example thus leading to ΔM=0.3628 kg; 14) 
Δm=kT ln(τ/Δτ) /Θμ is the QoO of the mass m of a massive 
particle that is expressed as the ratio of the lifespan-
weighted thermal-energy term kTln(τ/Δτ) to the product of 
Θ and μ, e.g., Δm=2.1538 x 10-27 kg when 
Δτ =1 day=1/365 year and the lifespan (τ ) of the life-bits in 
the medium is of 102 years (as a means of comparison the 
mass of a hydrogen atom (mH) is 1.6667 x 10-27 kg); 15) 

QEQ =◊ Δτ  is the QoR energy that leaves the medium during 
Δτ and is the same as the operating heat energy Q that enter 
it (this operation is a control or compensating action from 
the medium’s surroundings that maintains the medium 
mass-energy E=Mc2 constant with the passing of time); 16) 
ΔJ=ΔM/Δm=Q/kTln(τ/Δτ) denotes the fraction of the total 
number of thermotes J of the medium which equals the 
ratio of ΔM to Δm or equivalently the ratio of Q to 
kTln(τ/Δτ), e.g., ΔJ =1.6831 x 1026 for our running 
example; 17) JkTE LB Δ=◊ Δτ )/ln(/ τττ Δ◊= Δ

QE  denotes a 
‘life-bits (LBs) energy’ fraction of the QoR radiation 
energy ( QE τΔ◊ ) with the fraction factor given by the 
reciprocal of the lifespan expression ln(τ/Δτ), e.g., 

510 x 2082.7=◊ Δ
LBE τ  Joules for our running example 

which is 9.5% of the total emitted radiation QE τΔ◊ ; and 18) 
1/ =

ΔΔΔ ◊◊= LBLBLB
BH

EEN τττ  denotes a “theoretical black hole 

based” number of life-bits that leave the medium during Δτ, 
and is defined as the “QoR energy ratio” of the life-bits 
energy ( LBE τΔ◊ ) that leave the medium during Δτ over the 

QoR energy ( 1=
Δ◊ LB

BH
E τ ) of the single life-bit that leaves a 

black hole over its QoO lifespan crBHBH /2ln640=Δτ  
with the mass of the black hole being the same as that of 
the flexible phase medium, e.g., for our running example 

bitsxN LB  10   46 6=Δτ  Mbytes  8=  ( 1=
Δ◊ LB

BH
E τ  = 0.0112 Joules 

for this case), where it is also of interest to note that this 
black hole based ‘QoR’ energy ratio is approximately 90% 
of the also black hole based ‘QoO’ mass ratio ΔM/ΔMBH 
=71 x 106. 
 

IV. FLEXIBLE PHASE VERSUS IDEAL  
GAS ENTROPIES 

 
In this section the LTT FP entropy expression in (28) for 
flexible phase mediums is contrasted with the non-LTT IG 
entropy expression for gas mediums  [2], from which it was 
first derived [20] by applying LTT conditions.   

First the LTT flexible phase medium is noted to be 
characterized by the following five expressions:  

• The LTT flexible phase entropy (S):  
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• The LTT flexible phase thermal-energy (kT): 
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• The LTT flexible phase constant volume heat 
capacity (cV(η)): 
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• The LTT flexible phase law:  
)(/ ηVcEJkTVP ==                          (40) 

• The LTT flexible phase number of particles:  
)/)(/()(/ 2ckTcMkTcEJ VV ηη ==                 (41) 

where all the variables in (37)-(41) were earlier defined for 
(28) except for P in (40), the pressure on the FP medium. 
 Secondly the non-LTT ideal gas medium is noted to be 
characterized by the following five expressions:  

• The non-LTT ideal gas Boltzmann entropy (SIG):  
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• The non-LTT ideal gas thermal-energy (kTIG): 

IGV
IG

IG JcUU
kSkT /)/( 1

=⎟
⎠
⎞⎜

⎝
⎛

∂
∂=

−
             (43) 

• The non-LTT ideal gas constant volume heat 
capacity (cV): 
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• The non-LTT ideal gas law:  
VIGIGIGIG cUkTJPV /==                     (45) 

• The non-LTT ideal gas number of particles:  
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mMkTcUJ IGVIG // ==                    (46) 
where a comparison of (37)-(41) and (42)-(46) reveals at 
least six basic differences between them.  They are: 

1) The LTT internal energy (E) in (37) is the 
“regulated” total energy of the FP medium, thus 
it includes all gravitational/non-gravitational 
interactions of its particles, while the non-LTT 
internal energy (U) in (42) is the partial energy 
of the IG medium that only includes the kinetic-
energy/potential-energy of its particles.  

2) The LTT number of particles (J) in (37) refers to 
thermotes of the FP medium, while the non-LTT 
number of particles (JIG) in (42) refers to 
“massive particles” of the IG medium.  

3) The LTT pressure (P) in (40) refers to the 
pressure exerted on the FP medium volume by 
all the thermotes making up the internal energy 
E, while the non-LTT pressure (PIG) in (45) 
refers to the pressure exerted on the IG medium 
by all the massive particles making up the 
internal energy U. 

4) The LTT DoF coupling constant η in (39) acts as 
a ‘compression factor’, since η < 1, on the heat 
capacity cV or DoF=2cV of the medium that 
conveys the actual non-equilibrium thermal 
conditions, while the non-LTT ideal-gas entropy 
model of (42) does not have such constant.  

5) The number of LTT microstates (Ω) in (37) is 
exponentially related to the number of thermotes 
(J), while the number of non-LTT microstates 
(ΩIG) in (42) is exponentially related to the 
number of massive particles (JIG). As a result, 
the LTT Boltzmann entropy (S) is expected 
under most conditions to be significantly larger 
than the non-LTT Boltzmann entropy (SIG) since 
J >> JIG. 

6) The FP entropy (37) satisfies the constant total 
medium energy ∑ =

==
r

i iinMcE
1

2 ε  and constant 

number of thermotes ∑ =
=

r

i inJ
1

 constraints with 

ni being the number of thermotes with the i-th 
microstate energy εi of r possible, while the IG 
entropy (42) satisfies the constant internal 
energy ∑ =

=
r

i iiU
1

ες  and constant number of 

atoms/molecules ∑ =
=

r

i iIGJ
1
ς  constraints with 

iς  being the number of atoms/molecules with the 
i-th microstate energy εi of r possible. 

 
V. HUMAN LIFESPAN STUDY 

 
The flexible phase ULTE (or FP ULTE) is now illustrated 
with a human lifespan study. The flexible phase medium 
assumed for this case is well suited to model the human 

medium since it directly reflects either atom or molecular 
interactions of both gravitational and non-gravitational 
origin. Before the flexible phase ULTE was first 
investigated in [20], the source entropy model for an ideal 
gas had been used by the author in [1] since it led to simple 
tractable solutions. Yet this solution was deficient in its 
applicability since an IG entropy model was being applied 
to a non-gas liquid medium. Fortunately this deficiency has 
now been addressed by the discovery of the flexible phase 
ULTE as is illustrated next. First it is noted that (28) and 
(33) as well as the mass density equation for a water 
medium given by V=M/1000=E/1000c2, lead to the 
following DoF lifespan equation and specific result of 
τ = 102 yrs for a 70 kg individual whose non-equilibrium 
thermal state corresponds to a DoF coupling constant 
specified by η=0.66: 

( ) yrs 1022
)2/3(2/5

≈Δ=
−Vc

vRTE qqqq
J
e η

αηττ            (47)  

where for our running example α=1.11, qE=0.0821, 
qE=5.49x1030, qR=7.6749, qv=4.3x103, Δτ=1/365 years and 
cV=3. The τ = 102 yrs result of (47) is then noted to 
coincide with the following NCR lifespan equation result 
(used in [22]-[23] to derive a life expectancy premium): 

yrs 102
2

≈⎟
⎠
⎞

⎜
⎝
⎛

Δ
Δ=

M
Mττ                       (48)  

that surfaces from the ULTE (9), and is illustrated with 
M=70 kg and ΔM=0.3628 kg of food/day (corresponding to 
a 1,841 kcal/day diet).  

The two different approaches to the evaluation of τ 
expressed by (47) and (48) have resulted in identical results 
when sensible assumptions for the individual’s medium 
were made. Moreover, it is noticed that (47) and (48) can be 
equated to yield the following mathematical micro DoF 
(reflected by the η value) to physical macro NCR (reflected 
by the ΔM value) non-linear relationship: 

( ) ( ) 2
)2/3(1

2/5

−
−−

=Δ
Vc

vRT qqqq
e
JMM

η
ε

αη
             (49) 

 It is further noticed that if one assumes that the 
childhood lifespan of the 70 kg individual is of 18 years, 
his/her expected total lifespan would be of 120 years (this 
number of years is close to the maximum recorded lifespan 
for a human which exceeds 122 years [24]). Moreover, 
lower adult lifespans would be found if the daily 
consumption of food is greater than 0.3628 kg or 
alternatively if the DoF coupling constant η increases in 
value from 0.66. For instance, when ΔM=0.5654 kg for a 
2,827 kcal/day diet or η=0.6698 one derives a theoretical 
adult lifespan of 42 years from both (47) and (48). The 
decrease in adult lifespan from 102 to 42 years is 
substantial but expected since the 70 kg individual has 
significantly increased his/her ΔM (or increased the value 
of η) while still maintaining the same mass of 70 kg. 
Clearly this implies an increased metabolic strain per day 
leading to the individual aging at a faster rate [18].  
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The above results have posited the theoretical DoF 

lifespan equation method of (47) as a sensible alternative to 
the theoretical NCR lifespan equation method of (48) (both 
linked through (49)), for the study of biological lifespan. 

 
VI. SUMMARY AND CONCLUSIONS 

 
This paper described the revelation of a novel 
thermodynamics entropy method for mediums with an 
arbitrary phase. The method surfaced naturally from linger 
thermo theory, one of two major designs of the UC duality, 
the other is latency information theory. The UC duality was 
first identified in 1978 in LQG control and then applied to 
quantized control to yield a technique called Matched 
Processors. This control technique was the time-certainty 
dual of the space-uncertainty Matched Filters for bit 
detection. Moreover, it advanced a practical parallel 
processing approach to quantized control that did not suffer 
of what Bellman called “the curse of dimensionality” of his 
Dynamic Programming. More than two decades later 
DARPA funded research on high-performance KA adaptive 
radar ignited the discovery of the time dual for information 
theory that was named latency theory and their synergistic 
unification that was named latency information theory or 
LIT. From LIT a fast and powerful approach to adaptive 
radar surfaced which was named power centroid radar or 
PC radar. In turn, this discovery eventually led to the 
revelation of the time dual for thermodynamics that was 
named lingerdynamics as well as their synergistic 
unification that was named linger thermo theory or LTT. 
Finally from LTT the entropy solution to flexible phase 
mediums of this paper surfaced. More specifically the FP 
entropy for flexible mediums was found to arise from the 
expression for the entropy of an ideal gas when adapted to 
satisfy a LTT mass-energy regulation constraint. The 
reasonableness of the derived LTT FP entropy scheme in 
modeling the entropy of a biological medium was verified 
when its predictions for the theoretical adult lifespan of an 
individual were found to match those earlier derived using 
an alternative LTT nutritional consumption rate or NCR 
method. Moreover, it was found that the FP entropy method 
described the control of lifespan from a novel micro DoF 
metric perspective not offered by the earlier macro NCR 
metric approach. These results have established the DoF 
based FP entropy approach as a sensible tool for the study 
of the biophysical chemistry of lifespan. In the future it is 
expected that LTT FP entropy method will find broad use 
in lifespan investigations since gravitational/non-
gravitational interactions of atoms or molecules are the rule 
rather than the exception. Finally, researchers working in 
their own challenging problems, regardless of field of 
interest, are encouraged to reflect on the UC duality 
counsel that says, “Synergistic physical and mathematical 
dualities naturally arise in efficient system designs.” 

 
DEDICATION 

In this the 120th year since his birth this article is dedicated to 
the memory of Norbert Wiener, originator of cybernetics. 
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