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Abstract—Statistical physics bridges for latency information theory (LIT) are revealed in this second paper of a three 
paper series that include the discovery of the time dual of thermodynamics. LIT is the universal guidance theory for 
efficient system designs that has inherently surfaced from the confluence of five ideas. They are: 1) The source entropy 
and channel capacity performance bounds of Shannon’s mathematical theory of communication; 2) The latency time 
(LT) certainty of Einstein’s relativity theory; 3) The information space (IS) uncertainty of Heisenberg’s quantum 
physics; 4) The black hole Hawking radiation and its Boltzmann thermodynamics entropy S in SI J/K; and 5) The 
author’s 1978 conjecture of a structural-physical LT-certainty/IS-uncertainty duality for stochastic control. LIT is 
characterized by a four quadrants revolution with two mathematical-intelligence quadrants and two physical-life ones. 
Each quadrant of LIT is assumed to be physically independent of the others and guides its designs with an entropy if it is 
IS-uncertain and an ectropy if it is LT-certain. While LIT’s physical-life quadrants I and III address the efficient use of 
life time by physical signal movers and of life space by physical signal retainers, respectively, its mathematical-
intelligence quadrants II and IV address the efficient use of intelligence space by mathematical signal sources and of 
processing time by mathematical signal processors, respectively. Seven results are stated next that relate to the revelation 
of statistical physics bridges for LIT. They are: 1) Thermodynamics, a special case of statistical physics, has a time dual 
named lingerdynamics; 2) Lingerdynamics has a dimensionless lingerdynamics-ectropy Z that is the LT-certainty dual of 
a dimensionless thermodynamics-entropy, and like thermodynamics has four physical laws that drive the Universe; 3) S 
advances a bridge between quadrant II’s source-entropy H in bit units and quadrant III’s retainer-entropy N in SI m2 
units; 4) Z advances a bridge between  quadrant I’s mover-ectropy A in SI secs and quadrant IV’s processor-ectropy K in 
binary operator (bor) units; 5) Statistical physics bridges are discovered between the LIT entropies and the LIT 
ectropies; 6) Half of the statistical physics bridges between the LIT entropies and LIT ectropies are found to be medium 
independent, thus yielding the same entropy-ectropy relationships for black holes, ideal gases, biological systems, etc.; 
and 7) A medium independent quadratic relationship τ=l(M/ΔM)2 relates the lifespan τ of a retained mass M to the ratio 
of M to the fractional mass ΔM that escapes it every l seconds, e.g., for a human with M = 70 kg, expected lifespan of 
τ=83.9 years (or 2.65 Gsec), l=1 day (or 86.4 ksec), its daily escaping mass is given by ΔM=0.4 kg. In turn, this requires 
him/her to consume 2,000 kcal per day (i.e., 5,000 kcal/kg times 0.4 kg) to replace the 0.4 kg lost from day to day which 
correlates well with expectations. 
 
Index Terms—Statistical physics, information space uncertainty, latency time certainty, communication through 
channels, observation across sensors, adaptive radar, black holes, ideal gas, lifespan, relativity, quantum physics 
 

1. Introduction 
  

This paper reveals statistical physics bridges for latency information theory (LIT) that include the discovery of the 
latency time (LT) certainty dual of information space (IS) uncertainty thermodynamics. A review paper that presents 
some preliminary results of these revelations can also be found in the IEEE Sarnoff 2010 Symposium Proceedings [1]. 
Moreover, two related publications [2]-[3] complement this manuscript. While in [2] a review of the control roots of LIT 
is advanced, in [3] the LIT roots of knowledge-unaided power-centroid adaptive radar are discussed. The manuscript is 
organized in three additional sections. In Section 2 the eight performance bounds that LIT uses to guide system designs 
are defined and illustrated with simple examples to facilitate the understanding of the derived statistical physics bridges. 
In Section 3 the statistical physics bridges are discussed in some detail, inclusive of its enhanced version that contains 
lingerdynamics, which is the newly discovered LT-certainty dual of IS-uncertainty thermodynamics. In the last Section 4 
a human lifespan example is used to illustrate a result that has surfaced from the investigation of the statistical physics 
bridges for LIT. This result is that a quadratic relationship relates the lifespan of a mass to the ratio of this mass over the 
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Fig. 1.  The LIT revolution with four lower performance bounds [KHAN (χ)], four upper performance bounds [FICT. 
(c)], and the counter-clockwise ectropies to entropies statistical physics bridge sequence [ NHAK ⇒⇒⇒ ]. 

 
fractional mass that escapes it over some specified cyclic time span, e.g. the 86,400 seconds of a single day. 
 

2. The Performance Bounds of the LIT Revolution 
 
      Fig. 1 displays the four quadrants of the LIT revolution inclusive of the eight performance bounds of the 
mathematical-physical theory of communication-observation which is part of LIT [1]. These four quadrants address 
physically independent system design efficiency problems whose performance bounds are nevertheless bridged by 
statistical physics bridges as is found in this paper. Following a counter-clockwise description these LIT quadrants are: 
1) The mathematical-intelligence LT-certainty/LT-observation quadrant IV that via lower/upper performance bounds 
guides the design of processors with an efficient intelligence time (or intel-time), thus giving rise to what is called here, 
“the mathematical theory of observation”. The efficiency of the processors is measured by the maximum number of 
binary operator (or bor) levels that the mathematical signal (or intelligence) uses as it is processed via multiple paths 
from start to finish. The lower bound is the processor-ectropy K in mathematical bor units that guides the design of 
efficient intel-time signal-processors. The other upper bound is the dimensionless sensor-consciousness F that  guides  
the  design  of  efficient  sensor  and   processor  integrated  (SPI)  coders  to  be  described later; 2) The physical-life 
LT-certainty/IS-communication quadrant I that via lower/upper performance bounds guides the design of movers with 
an efficient life-time, thus giving rise to what is called here, “the physical theory of communication”. The efficiency of 
the movers is measured by the maximum number of SI seconds that the physical signal uses as it is moved via multiple 
paths from start to finish. The lower bound is the mover-ectropy A in physical SI sec units that guides the design of 
efficient life-time signal-movers. The other upper bound is the dimensionless channel-stay T that guides the design of 
efficient channel and mover integrated (CMI) coders; 3) The mathematical-intelligence IS-uncertainty/IS-
communication quadrant II that via lower/upper performance bounds guides the design of sources with an efficient 
intelligence space (or intel-space), thus giving rise to what Claude E. Shannon called, “the mathematical theory of 
communication”. The efficiency of the sources is measured by the expected amount of inter-space that the mathematical 
signal uses as it is sourced from start to finish. The lower bound is the source-entropy H in mathematical binary digit 
(bit) units that guides the design of efficient intel-space signal-sources. The other upper bound is the dimensionless  
source-capacity C that guides the design of efficient channel and source integrated (CSI) coders; and 4) The physical-life 
IS-uncertainty/LT-observation quadrant III that via lower/upper performance bounds guides  the  design of retainers with 
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Fig. 2.  The Structural-Physical LT-Certainty/IS-Uncertainty Dualities of the LIT Revolution. 
 

an efficient life-space, thus giving rise to what is called here, “the physical theory of observation”. The efficiency of the 
retainer is measured by the expected amount of life-space that the physical signal uses as it is retained from start to 
finish. The lower bound is the retainer-entropy N in physical surface area SI m2 units that guides the design of efficient 
life-space signal-retainers. The other upper bound is the dimensionless sensor-scope ‘I’ that guides the design of 
efficient sensor and retainer integrated (SRI) coders. 
 

The LIT revolution exhibits three major dualities. They are: 1) The vertical LT-certainty/IS-uncertainty duality of 
quadrants I, IV and quadrants II, III; 2) The horizontal IS-communication/LT-observation duality of quadrants I, II and 
quadrants III, IV, where there are IS-uncertainty and LT-certainty versions for both channels and sensors; and c) The 
diagonal physical-life/mathematical-intelligence duality of quadrants I, III and quadrants II, IV, which are the two 
fundamental and complementary pillars of biological systems. More specifically, one of these pillars is responsible for 
the storage and processing of intelligence (the neural networks) and the other for the motion and retention of life which 
is enabled by the stored and processed intelligence. Thus from this LIT revolution a nascent efficiency theory for both 
living and non-living systems inherently emerges. An obvious question that then surfaces is, “Is there a natural bridge 
that may be used to navigate the LIT quadrants?”. As will be seen in Section 3 the answer to this question is on the 
affirmative. The desired bridge is advanced by statistical physics in both its classical IS-uncertainty thermodynamics 
form [4]-[5] as well as a newly discovered LT-certainty lingerdynamics duality form.  

 
A. The Two Performance Bounds of “The Mathematical Theory of Communication” of LIT’s Quadrant II  

The source-entropy H in bit units is the first performance bound. It is the expected source-information given by 
Λ=== ∑Ω

= 21
log)()()]([

i iSiSiS gIgPgIEH                                                     (1) 

))(/1(log)( 2 iSiS gPgI =                                                                    (2) 

 ∑Ω
==Λ 1 )()(2 i iSiS gIgP

                                                                         (3) 
where: 1) G ∈{g1,..,gΩ} is a n-dimensional random vector composed of Ω  vector outcomes {g1,..,gΩ}; 2) IS(gi) is the gi 
source-information in bit units; 3) PS(gi) is the gi source-probability; and 4) Λ may be viewed as an effective number of 
outcomes, with Λ=Ω for equally likely outcomes. Expression (1) advances a lower performance bound for the intel-
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space of lossless source-coders. A source-coder is any replacement of a given signal-processor. The source-coder is 
lossless when its output is the same as that of the given signal-source and lossy when it is not. 

The dimensionless channel-capacity C is the second performance bound [6]-[7]. It is the maximum percentage of 
the expected source-information that can be extracted without loss from a noisy intel-space channel and is defined by 

1])([ max)(0
]}[{

≤==≤ λρλλ
λ

HHHHHHC / // EF/EE --
iSP

                                                (4)    

where E is the input and F is the output of the channel corresponding to the n-dimensional codewords λ and ρ with a 
source-probability distribution {PS[λi]} that maximizes the mutual source information 

λρλλ HHH / /)( -  (e.g., for a 

memoryless binary symmetric channel {PS[λi]} is uniformly distributed, i.e., PS[λ1]=PS[λ 2]=1/2 [7]). In particular, HE/F 
is a channel-induced intel-space penalty whose value determines the percentage of the intel-space specified by HE that 
can be time-communicated without loss (or equivalently its probability of error approaches zero). In quadrant II of the 
LIT revolution of Fig. 2 the CSI-coder is displayed whose design is guided by C. While the CSI-coder’s source-coder 
efficiently compresses intel-space, its channel-coder efficiently uses overhead intel-space for the time-communication of 
intel-space through a noisy intel-space channel. 
 
B. The Two Performance Bounds of “The Mathematical Theory of Observation” of LIT’s Quadrant IV 

The processor-ectropy K in bor units is the first performance bound. It is the minimax processor-latency given by 
    )]]([)],..,([max[)](),..,(max[ 111 nPnPnPP gCfgCfgLgL ==K                                          (5) 

where: 1) g=[g1,..gn] is the n-dimensional signal-processor vector output; 2) LP(gi) is the gi processor-latency; and 3) the 
function fi[CP(gi)]=LP(gi) conveys the dependence of LP(gi) on the gi processor-constraint CP(gi). Expression (5) provides 
a lower performance bound for the intel-time of lossless processor-coders. A processor-coder is any replacement of a 
given signal-processor. The processor-coder is lossless when its output is the same as that of the given signal-processor 
and lossy when it is not. As an illustration of the use of (5) in guiding the design of either lossless or lossy processor-
coders consider a 1-bit full-adder [8] signal-processor that has a slow bor multi-level implementation structure where the 
sum output is associated with six bor levels and the carry-out with five bor levels. This signal-processor is thus 
characterized by a minimax processor rate RP=6 bors which is the maximum of the six bor levels for the sum, and the 
five bor levels for the carry-out. The reason for this relatively large number of bor levels is that this full-adder was 
originally designed under the implementation processor constraints CP(sum) and CP(carry-out) that specify that in the 
generation of the sum and carry-out only two-input gates can be used. Nevertheless, this same signal-processor is noted 
to have a processor-ectropy of 3 bors when the processor constraints are relaxed to allow for gates with more than two 
inputs. More specifically, from the sum of minterms Boolean expressions for the sum and carry-out of the 1-bit full-
adder [8] it follows that the processor-latencies are given for the sum output by LP(sum)=3 bors and for the carry-out by 
LP(carry-out)=2 bors. The maximum of these two numbers is then the processor-ectropy K=3 bors. Moreover, while the 
1-bit full adder is a lossless processor-coder, a lossy but faster, by one bor level, 1-bit full adder can be readily derived 
from the lossless case by only implementing the two bor levels for the carry-out and by setting the sum output to zero. 
Thus this lossy processor-coder has a rate RPC of two bors which is less than the processor-ectropy of 3 bors, i.e., RPC = 2 
bors < K=3 bors. 

The dimensionless sensor-consciousness F is the second performance bound. It is the maximum percentage of the 
minimax processor-latency that can be extracted without loss by a window-limited intel-time sensor and is defined by 

1])([ max)(0 /
]}[{

≤==≤ efee KKKKKKF // ef/ee --
iP eC

                                                (6)    

where e is the input and f is the output of the sensor corresponding to the n-dimensional vectors e and f with processor- 
constraints {CP[ei]} that maximize the mutual processor latency 

efee KKK /- )( /
 (e.g., for the full adder case the 

processor constraints {CP[ei]} that maximize the mutual processor latency is when the sum output and carry-out can be 
derived using logic gates with an arbitrary number of inputs). In particular, Ke/f is a sensor-induced intel-time penalty 
whose value determines the percentage of the intel-time specified by Ke that can be space-observed without loss. In 
quadrant IV of the LIT revolution of Fig. 2 the SPI-coder is displayed whose design is guided by F. While the SPI-
coder’s processor-coder efficiently compresses intel-time, its sensor-coder efficiently uses overhead intel-time for the 
space-observation of intel-time across a window-limited intel-time sensor. As an illustration of how (6) can be used 
consider a 1-bit full-adder based recursive adder of two bytes. This recursive adder has a processor-ectropy of 16 bors, 
i.e., Ke=16 bors, since the processor-latency of the 1-bit full-adder carry-out is of 2 bors and 8 bit pairs (plus the carry-in 
for each pair) are being added. Then if one observes the adder output with a 14-bors window-limited intel-time sensor, 
the sensor-induced inter-time penalty will be of 2 bor, i.e. Ke/f =2 bors. In turn, this results in a sensor-consciousness 
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value of F=(16-2)/16=0.88 that informs us that only 88% of the 16 bors intel-time of Ke can be space-observed without 
loss. Thus the adder intel-time latency must be of at least 18 bors. The additional 2 bors that are required to observe the 
full sum can then be facilitated by a sensor-coder that uses prior-knowledge, e.g. that LSBs can be zero, which allows 
the addition to start 2 bors earlier in time. 
 
C. The Two Performance Bounds of “The Physical Theory of Communication” of LIT’s Quadrant I 

The mover-ectropy A in SI sec units is the first performance bound. It is the minimax mover-latency given by 
    )]]([)],..,([max[)](),..,(max[ 111 nMnMnMM CfCfLL γγγγ ==A                                       (7) 

where: 1) γ=[γ1,..γn] is the n-dimensional signal-mover vector output; 2) LM(γi) is the γi mover-latency; and 3) the 
function fi[CM(γi)]=LM(γi) conveys  the dependence of LM(γi) on the γi mover-constraint CM(γi). Similarly to the 
processor-ectropy K (5) the mover-ectropy A (7) is a minimax criterion that advances a lower performance bound for the 
life-time of lossless mover-coders. A mover-coder is any replacement of a given signal-mover. The mover-coder is 
lossless when it moves all the given signal-mover physical signals and lossy when it does not. Examples of mover-
coders are four-wheeled vehicles whose goal is the negligible decrease of the lingering (or remaining life-time) of 
people when space-dislocating them by some desired ΔxPe, and photons that carry electromagnetic radiation at the speed 
of light in a vacuum for some desired space dislocation ΔxPh. An example of a lossy mover-coder is an automobile that 
can only move six people, but yet replaces a van that carries ten people, thus the four people left behind represent a 
physical signal loss.  
 

The mover-ectropy is next derived for a sphere that acts as a signal computational medium in a multi-path 
environment (in the next subsection the mover-ectropy of this sphere will be related to its retainer-entropy N when it 
also acts as a signal storage medium). First it is noted that the minimax property of the mover-ectropy is inherent when 
several movers using different computational paths simultaneously depart from the same location in space to another 
location in space some distance away. The paths that these movers can follow are part of a set of motion constraints, e.g., 
all the computational paths that can be taken along the surface of a sphere or within. For the considered spherical case 
the movers will be assumed to move at a constant speed v along all the computational paths available. A will then be 
given by 

 A=πr/v                                                                                (8) 
where r is the radius of the sphere. To derive this result it is first noted that πr/v is the minimum life-time for motions 
that are restricted to the surface of the sphere. On the other hand, 2r/v is the minimum life-time for motions that are not 
restricted as to which path may be taken. Notice that this minimum life-time path is along the diameter of the sphere 
whose distance is 2r. The largest of these two life-times, i.e. πr/v, is then the minimax mover-ectropy A of the spherical 
computational medium (8).  

The dimensionless channel-stay T is the second performance bound. It is the maximum percentage of the expected 
mover-latency that can be extracted without loss from a multi-path life-time channel and is defined by 

1])([ max)(0
]}[{

≤==≤ ε/εε
eC iM

AAAAAAT // eφ/εε φ--                                                        (9)    

where ε is the input and φ is the output of the channel corresponding to the n-dimensional vectors ε and φ  with mover-
constraints {CM[ei]} that maximize the mutual mover latency ε/εε AAA /)( φ- . In particular, 

φ/εA is a channel-induced life-

time penalty whose value determines the percentage of the life-time specified by Aε that can be space-communicated 
without loss. In quadrant I of the LIT revolution of Fig. 2 the CMI-coder is displayed whose design is guided by T. The c 
also shown in quadrant I reminds us of the Einstein conjecture of the ‘speed of light in a vacuum’ upper limit that 
movers can never exceed. While the CMI-coder’s mover-coder efficiently compresses life-time, its channel-coder 
efficiently uses overhead life-time for the space-communication of life-time through a multi-path life-time channel. For 
instance, if for our spherical computational medium example 1.2 msec is derived for its minimum surface path and 1 
msec for its direct diameter path, then Aε will be equal to 1.2 msec. Thus if the movement along each motion path is 
slowed down by a life-time channel that increases each mover life-time by at most 0.2 msec, it then follows that Aε/φ  
will be of 0.2 msec. In turn, this results in T=(1.2-0.2)/1.2=0.834 which informs us that only 83.3% of the 1.2 msec life-
time in Aε can be space-communicated without loss. Thus the life-time of the longest life-time mover can never be less 
than 1.4 msecs. It is then the task of the life-time channel coder to provide the mover paths that satisfy the 1.4 msecs 
limit. 
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D. The Two Performance Bounds of “The Physical Theory of Observation” of LIT’s Quadrant III 
      The retainer-entropy N in SI m2 units is the first performance bound. It is the expected retainer-information given by 

        2
1

4)()()]([ rPIIE
i iRiRiR πεεε === ∑Ω

=
N                                                        (10) 

               IR(εi)=4πri
2(PR(εi))                                                                        (11) 

    ∑Ω

=
=

 

1 
2 )())((  

i iRiRi PPrr εε                                                                          (12)                      

where:1) Ψ ∈{ε1,..,εΩ} is a n-dimensional random vector composed of Ω vector outcomes (or microstates) {ε1,..,εΩ}; 2) 
IR(εi) is the εi retainer-information in SI m2, which specifies the minimum surface area (corresponding to the surface area 
of a sphere of radius ri(.) and volume Vi) life-space of εi with volume Vi; 3) PR(εi) is the εi retainer-probability; and 4) r is 
the radius of the sphere given by the square root of the expected radius square of the minimum surface area spheres 
linked to {ε1,..,εΩ}. Similarly to the source-entropy H (1) the retainer-entropy N (10) is an expectation criterion that 
advances a lower performance bound for the life-space of lossless retainer-coders. A retainer-coder is any replacement 
of a given signal-retainer. The retainer-coder is lossless when it retains all the given signal-retainer physical signals and 
lossy when it does not. Examples of retainer-coders are a thermos whose goal is the negligible decrease of the 
temperature of hot tea when time-dislocating it by some desired ΔτHt, and an atom that maintains the direction of its spin 
for some desired time-dislocation ΔτSp. An example of a lossy retainer-coder is a thermos that can only store three hot 
tea servings, but yet replaces a thermos that stores five hot tea servings, thus the two hot tea servings left behind 
represent a physical signal loss. An example of a lossless retainer-coder that achieves the retainer-entropy N=4πr2 is a 
spherical thermos of hot tea whose volume is the same as that of the given cylindrical thermos that it replaces.  

The dimensionless sensor-scope ‘I’ is the second performance bound. It is the maximum percentage of the expected 
retainer-information that can be extracted without loss from a noisy life-space sensor and is defined by 

1])([ max)(0
]}[{

≤==≤ ΞΦΞΞ βαββ
β

NNNNNNI /-/- //
iRP

                                                (13)    

where Ξ  is the input and Φ is the output of the sensor corresponding to the n-dimensional microstates β and α with a 
retainer-probability distribution {PR[βi]} that maximizes the mutual retainer information 

βαββ NNN /- / )( . In particular, 

NΞ/Φ  is a sensor-induced life-space penalty whose value determines the percentage of the life-space specified by NΞ that 
can be time-observed without loss.  In quadrant III of the LIT revolution of Fig. 2 the SRI-coder is displayed whose 
design is guided by ‘I’. The χ also shown in quadrant III reminds us about the conjecture of 2008 by the author [9] of the 
‘pace of dark in an uncharged and non-rotating black hole (UNBH)’ upper limit that retainers can never exceed. The 
derived expression and value for the pace of dark is  

χ =τ/V= 960πc2/hG = 6.1123 x 1063 secs/m3                                                    (14) 
where τ is the lifespan of a UNBH with an initial volume of V, and h and G are the Plank and gravitational  constants, 
respectively. While the SRI-coder’s retainer-coder efficiently compresses life-space, its sensor-coder efficiently uses 
overhead life-space for the time-observation of life-space across a noisy life-space sensor. As an illustration, if a 
cylindrical thermos for hot tea with a surface area of 168π cm2 has a retainer-entropy of NΞ=144π cm2, this retainer-
entropy can be implemented with a spherical thermos with a 6 cm radius that has the same volume as the given 
cylindrical thermos. However, if the hot tea is time-observed with a noisy life-space sensor consisting of random people 
that require the drinking of the hot tea from a thermos cup with a 166π cm2 surface space, the sensor-induced life-space 
penalty will be of 22π cm2, i.e. NΞ/Φ=22π cm2. In turn, this results in I=(144-22)/144=0.847 informing us that only 
84.7% of the 144π cm2 life-space of NΞ can be time-observed without loss. Thus the hot tea life-space must be of at least 
166π cm2. It is then the task of the life-space sensor coder to provide a thermos cup that satisfies the 166π  cm2 limit. 
 
 

3. The Statistical Physics Bridges of the LIT Revolution 
 

In this section it is revealed that statistical physics, of which thermodynamics is a special case, offers a natural bridge 
for the entropies and ectropies of the LIT revolution. The discussion begins with the thermodynamic-entropy for a black 
hole [4]-[5] that advances a natural ‘linear bridge’ between the source-entropy and retainer-entropy of the IS-uncertainty 
quadrants II and III of LIT. Then for an ideal gas a ‘nonlinear logarithmic bridge’ between these two entropies is found. 
Following with this investigation it is then discovered that a similar type of bridge exists between the mover-ectropy of 
quadrant I and the retainer-entropy of quadrant III, which in turn leads to the realization that thermodynamics has a LT-
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certainty dual which has been called lingerdynamics [13]. As expected from this LT-certainty/IS-uncertainty duality 
perspective a natural bridge between the mover-ectropy of quadrant I and the processor-ectropy of quadrant IV is then 
revealed for both the UNBH and an ideal gas. The section then ends with a summary of the lingerdynamics terms that 
are the LT-certainty duals of thermodynamic terms as well as the relations that bridge them.  
 
A. The Black Hole Thermodynamics Entropy 

It is well known [4] that a linear relationship exists between the Boltzmann thermodynamics-entropy S and the 
Shannon source-entropy H that is given by 

HS k 2ln=                                                                        (15) 
where both S and the Boltzmann constant k are in SI joules per kelvin (J/K) units and H is in bit units. Moreover, it is 
found that when the microstates of the retained mass or energy are equally likely, H attains the maximum value of 
H=log2Ω bits and S attains the maximum value of S=klnΩ as expected. For the special case of a UNBH the 
thermodynamic-entropy has been studied by Hawking and others [4]-[5], [9]. The principal result of this investigation 
that has a direct impact on the revelation of a statistical physics bridge for LIT is summarized by the relationship 

 ( )23 / 2920ln1/  2ln/2 2ln/ BitEHBitEHBitEHEHSEHEH /MM/NNNHS
EH

======= lcAhGAck τφχπ  (16)       
where:   

1) A is the surface area of the spherical UNBH and c, h, G and χ are the four Universe constants (14) [9]. 
2) The subscript EH that appears in (16) for different variables signify the ‘event horizon’ where a black-hole 

meets a vacuum. Hawking conjectured in the mid 1970’s that on this event horizon [5] photon pairs are spontaneously 
created, with one photon in each pair emerging inside the vacuum (the so-called Hawking radiation) and the other 
emerging inside the black-hole. While the photon inside the vacuum increases the positive energy of the vacuum, the 
photon inside the black-hole decreases the positive energy of the black-hole. Thus the Hawking conjecture predicts a 
finite life-time for any black hole in the absence of any external mass or energy entering it. If the initial volume VEH of 
the UNBH is known (or equivalently its initial mass MEH since VEH=4πr3/3=4π(2GMEH/c2)3/3 where 2/2 cGMr EH= is 
the Schwarzschild radius [4]-[5]), the lifespan τΒΗ  of the UNBH can be easily derived by multiplying the pace of dark 
χ by VEH, i.e.,  

τΕΗ = VΕΗ χ.                                                                              (17)       
3) SEH, HEH and NEH are the thermodynamics-entropy, source-entropy and retainer-entropy of the UNBH, 

respectively, with 
( )222 /244 cGMrA EHππ ===EHN                                                           (18)  

where the speed of light c appearing in (18) may be interpreted as the escape speed of the Hawking radiation from the 
event horizon of the UNBH.  

4) NBit is the bit retainer-entropy derived from the expressions 
 

EHSBitN φ/1= 3 /2ln2 chG π= 222 )/2(44 cGMr BitBit ππ ==                                         (19) 

PPBit LLr  4757.1  2ln == ππ                                                               (20)   
3 2/ chGLP π=                                                                          (21) 

RPRPBit MMM 1774.12ln2 ==                                                                 (22)    

 GhcM RP
216/ π=                                                                           (23) 

where πrBit  (denoting ½ of the circumference of the retainer-entropy sphere of radius rBit) is larger than the Plank length 
LP (21) as noted from (20) and expected by theory [4]. Moreover, it is assumed that a bit has a mass MBit (22) (or energy 
for photons) whose escape speed approaches c (or is c for photons) exceeding the reduced Plank mass MRP  (23). Finally 

EHSφ is the bit retention (or storage) surface fix in SI m-2 units of the UNBH where surface fix is the retention dual of 
frequency. In Table 1 selected retention/motion dualities are stated inclusive of the aforementioned surface-fix/frequency 
duality. 
 5) lBit is the time span (or weavelength which is the retention dual of wavelength) of escape of the bit mass MBit 
from the UNBH mass MEH via Hawking radiation, and is related to the UNBH radius r and the speed of light c as follows 

crrlBit / 2ln6403/  == χBitN .                                                                  (24) 
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B. The Ideal Gas Thermodynamics Entropy 

From (16) it is noted that statistical physics advances an inherent link between the source-entropy HEH of LIT’s 
quadrant II and the retainer-entropy NEH of LIT’s quadrant III. However, the simple linear relation HEH=NEH/NBit is 
unique to the UNBH medium and thus must be found for other mediums. For instance, for an ideal gas (IG) [10]-[11] the 
following nonlinear bridge between its retainer-entropy NIG and its source-entropy HIG is derived in Appendix A 

( ) ( )( )2
2 ///log  2ln/)/ln(2ln IGIGIGIGIGIGIGIGIG MMNNVHS Δ==Δ=+Β== lJcJTJk/ P

cV τ       (25) 

   ( )222 /244/3 evGMrrV IGIGIGN ππ ===                                                       (26)      

 ( )222 /244/1 eS vMGr
IG IGIGN Δ=Δ==Δ ππφ                                                      (27) 

  ( ) ( ) ( ) 3// 2 2/322/5 /MrhkTme IGSIG
πσφ =                                                    (28) 

    2/32/5 −−= VP cc Tegσ                                                                      (29)     
 2/3/ rmsIG vkTJMm ==                                                                    (30)   

 2/2/ eIG vGMr =                                                                          (31)  
ΠIGIG V=τ                                                                                (32) 

3/  rΠIGIG Nl Δ=                                                                            (33) 
where: 1) J is the number of gas molecules (assumed in this illustrative case to be of one species but easily extended to 
multi-species via the Gibbs theorem [10]); 2) VIG, T and MIG are the volume, temperature and mass of the gas in  SI m3, 
K, and kg units, respectively; 3) cV and cP=cV+1 are the dimensionless heat capacity constants under constant volume and 
pressure conditions, respectively, with cV=3/2 and cP=5/2 for a monatomic gas (the value of cV can be found either 
experimentally or theoretically, from the degrees of freedom df of the molecules where cV=df/2); 4) h is the Plank 
constant; 5) r is the radius of a sphere of volume VIG; 6) ve is the escape speed in SI m/sec units of the gas molecules 
from the gravitational field of the gas mass M that is assumed to be a point mass at the center of a sphere of radius r; 7) 
vrms is the root mean square speed of the gas molecules; 8) gT /32/3 Χ=Β  is an undetermined gas constant where 

mkTh π2/=Χ  is the thermal de Broglie wavelength, g=1 for a monatomic gas, and m is the mass of a single molecule; 
9) 

IGSφ in weavelength (the retention dual of wavelength defined in Table 1 [9]) cyclesl/m2 units is the retention (or 

storage) surface fix (the retention dual of frequency [9] defined in Table 1) of the gas; 10) σ is a dimensionless constant 
that has a value of one for a monatomic gas since cV=3/2 and g=1 for this case; 11) NIG is the retainer-entropy associated 
with MIG; 12) ΔNIG is a small fraction of the retainer-entropy NIG that is associated with the fractional mass ΔMIG <<MIG 
whose molecules’ escape speed is ve; 13) Π is the pace of retention in SI sec/m3 units of the ideal gas in the volume VIG; 
14) τIG is the lifespan of the ideal gas; and 15) lIG is the cyclic time span (or weavelength) of escape from the ideal gas 
mass MIG of the fractional mass ΔMIG. 

From (16) and (25) the general relationship between the retainer-entropy N and the source-entropy H is noted to be 
nonlinear, thus in general 

 ( )NHSS k fk ===2ln/                                                            (34) 
where, in particular, f(.) is a linear function of N for black holes (16) and is a nonlinear function of N for ideal gases 
(25), and the dimensionless thermodynamic-entropy expression S/ln2k has been assigned the symbol Sk. 
 
C. The Revelation of Lingerdynamics 

When the spherical storage medium associated with the retainer-entropy N=4πr2 (10) has the dual role of serving as 
a spherical computational medium, it is then noted that its mover-ectropy A=πr/v (8) is inherently linked to its retainer-
entropy via the sphere’s radius r. Thus the following bridge relationship is revealed 

24/ vNA π=                                                                          (35) 

cvve ≤≤                                                                           (36) 
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where the speed v is assumed greater than or equal to the escape speed ve of ΔMIG from the retained mass MIG and less 
than or equal to the speed of light c. Moreover, while for an UNBH ve=c since the escape speed from a black hole is that 
of Hawking radiation, for an ideal gas  

rGMv IGe /2=                                                                          (37) 

since the escape speed ve of ΔMIG from the gravitation field of the point-mass MIG is given by (37). 
 

The bridge between the LT-certainty mover-ectropy A and the IS-uncertainty retainer-entropy N for a spherical 
medium expressed by (35) inherently leads to the revelation of a LT-certainty dual for the IS-uncertainty 
thermodynamics bridge from N to H (34). This LT-certainty duality expression is given by  

( )AKZ g==                                                                            (38) 
where: 1) g(.) is some function of A that links the mover-ectropy A to the processor-ectropy K; and 2) Z is the 
dimensionless lingerdynamics-ectropy dual of the dimensionless thermodynamics entropy Sk defined in (34). It should 
be noted from the equality Z=K in (38) that although the lingerdynamics-ectropy Z is ‘physically’ dimensionless, it still 
has the same minimax computational mathematical bor units of K. Also note from Sk=H in (34) that although the 
dimensionless thermodynamics-entropy expression Sk is ‘physically’ dimensionless it still has the same expected storage 
mathematical bit units of H. Furthermore, while the IS-uncertainty bridge (34) is part of thermodynamics, the LT-
certainty bridge expression (38) is part of lingerdynamics which is the designated name for the LT-certainty dual of the 
IS-uncertainty thermodynamics. Notice that while the word thermo in thermodynamics relates to the IS-uncertainty 
properties of matter, the word linger in lingerdynamics relates to the LT-certainty properties of matter. Thus in essence 
statistical physics has been discovered to exhibit a LT-certainty/IS-uncertainty duality perspective which was first 
revealed in an October 2009 PSC-CUNY 41-951 research award proposal [13]. 
 

The bridge between A and K for the UNBH and the ideal gas are easily derived. For the UNBH it is given by the 
expressions 

  BitEHBorEHEHEH /NN/AAKZ ===                                                  (39) 

24/ cEHEH NA π=                                                                  (40) 
24//1 cf BitEHBor NA π==                                                           (41) 

where ZEH, KEH and AEH are the lingerdynamics-ectropy, processor-ectropy and mover-ectropy of the UNBH, and ABor 
is the mover-ectropy of the spherical medium associated with the bit retainer-entropy NBit while fEH is the bor motion (or 
computational) frequency of the UNBH. Furthermore, using (19) in (41) ABor can be expressed as 

 PP 4757.1 2ln/ TTcrBit === ππBorA                                                   (42)     

cLT P / P =                                                                           (43)      
which is noted to be larger than the Plank time TP as suggested by theory. Equations (16) and (39) can then be combined 
to yield the following bridge relationship between all four quadrants of LIT for an UNBH 

( ) 2
EH

2
EH

2
BorEHBitEHEHEHk, ZK/AA/NNHS ===== .                                    (44) 

24/ cEHEH NA π=                                                                     (45) 
24/ /1 cf BitEHBor NA π==                                                             (46) 

For an ideal gas a universal statistical physics bridge can be derived using a similar methodology as that used to find 
the one for a UNBH (44). More specifically, one departs from (25) while assuming that the relationship between A and 
N for LIT’s physical-life quadrants I and III is given by (35) and (36), i.e., 

24/ vNA π= ,                                                                       (47) 
and the relationship between H and K for LIT’s mathematical-intelligence quadrants II and IV is similar to that for the 
UNBH (44), i.e., 

HK = .                                                                           (48) 
When (47) and (48) are used in conjunction with (25) the desired statistical physics bridge results  

( )( ) 2
IG

2
IG

2
IGIGIGIGIGIGk, ZKA/AN/NHS ==Δ=Δ== 2logJ                                         (49) 

24/ vIGIG NA π=                                                                      (50) 
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24/ /1 vf IGIGIG NA Δ==Δ π                                                           (51) 

cvrGMve ≤≤= /2                                                                  (52) 
where ZIG, KIG and AIG are the lingerdynamics-ectropy, processor-ectropy and mover-ectropy of an ideal gas, and ΔAIG 
is the mover-ectropy of the motion (or computational) sphere associated with the retainer-entropy ΔNIG while fIG is the 
motion (or computational) frequency of the ideal gas. 
 
D. Statistical Physics with Retention Variables 

The defining expressions for the UNBH and the ideal gas bridge expressions (44) and (49) can also be expressed in 
terms of the physical retention duals of motion variables first advanced in [9] as well as the lingerdynamics dual for 
temperature whose assigned name is lingerature. When this is done the following expressions result: 

SEH  = NEH k /4LP
2

 = NEH kcχ/1920                                                       (53)  
NBit = 

EHSφ/1 = 4 ln2 LP
2 = 1920 ln2/cχ =7.2628 x 10-70 m2                                               (54) 

χcLP /480=                                                                     (55)  

( ) ( ) ( )223/222 /64/34/24/1 eIGeS ΠOΦvMG Δ=Δ==Δ χN IGIG IG
πππφ                                        (56) 

τ = 4πr3χ /3                                                                        (57) 
22243/4 4 4/ cr/acr/GMΦO IGIG ππτα χχ ===                                           (58) 

Gc/  8143 1210χπΦ = =1.8538 x 10168  Pa.sec4/3/kgR
2                                              (59)  

ΔOIG = ΔMIGc2/χ                                                                     (60) 
cvcrMGOΠ eIGIGe /// 2/ 6 3/1 χχ ===  τΦ                                                (61) 

( ) ( ) ( ) 3/4/3/ 2/ 3/13 462/322/52 /OchLceo IGSIG
τππσφ χχχ &&&=                                         (62) 

χ/2mco =                                                                              (63) 

χ kTL =&&&                                                                              (64) 

cvcmkToLΠ rmsrms // /3/3 χχ === &&&                                                     (65) 
where: 1) Eqs. (60), (61), (63), (64) and (65) are statistical bridges from ΔMIG, ve, m, T and vrms to the mater ΔOIG in SI 
kgR=kg.m5/sec3 (ΔOIG is the retention dual of mass ΔMIG), escape pace Πe in SI sec/m3, the molecular mater o in SI  
kgR=kg.m5/sec3, lingerature L&&&  in SI Pa.sec, and rms pace Πrms in SI sec/m3; 2) Eq. (57) is the bridge from the radius r of 
a motion-space vacuum sphere that at its motion-space center contains the space-point mass MIG, to the retention τ of a 
retention-time UNBH sphere that at its retention-time center contains the time-point mater OIG [9]; 3) α is the escalation 
of mater in SI sec/m6 (α is the retention dual of the mass acceleration ‘a’); 4) Eq. (58) is the bridge from the acceleration 
a of a mass at some point in motion-space ps that is due to the gravitational-field in a vacuum of a space-point mass MIG 
space-dislocated from ps by r, to the escalation α of a mater at some point in retention-time pt that is due to the 
gravidness-fallow in a UNBH (the retention dual of the gravitational-field in a vacuum) of a time-point mater OIG time-
dislocated from pt by τ ; 5) Φ is the gravidness constant; 6) Eq. (59) is the bridge from G to Φ ; 7) Eqs. (56) and (62) are 
retention duals for (27) and (28); and 8) Eqs. (53)-(55) express SEH,  NBit and LP in terms of cχ. It is of interest to note 
that while the value of NBit given in (54) sets a lower limit for the retainer-entropy of any medium, the retention (or 
storage) surface fix 

EHSφ of the UNBH bits sets an upper limit for the surface fix of any medium with its value given by 

EHSφ =cχ/1920 ln2 =1.3769 x 1069 cyclesl/m2.                                            (65a) 
 
E. A Brief Summary of the Lingerdynamics and the Thermodynamics Terms 

As expected lingerdynamics has LT-certainty dual terms for all the known IS-uncertainty thermodynamics terms. In 
this section many of these terms will be discussed with the aid of three tables. First, with the aid of Table 1 the physics 
LT-certainty motion and IS-uncertainty retention terms, dualities and bridges will be discussed. Second, with the aid of 
Table 2 the statistical physics LT-certainty lingerdynamics and IS-uncertainty thermodynamics terms, dualities and 
bridges will be treated.  Third and last, the previously derived bridges for the UNBH and ideal gas cases plus additional 
related concepts and extensions are summarized and further discussed with the aid of Table 3 and Appendix B. 
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Table 1. Selected Physics Motion/Retention Terms, Dualities and Bridges. 

 
LT-Certainty Motion Terms Bridge IS-Uncertainty Retention Terms 

Vacuum  Black-Hole 
Motion-Time t in SI sec  Retention-Space ξ in SI m3 

Motion-Space r(t) in SI m  Retention-Time τ (ξ) in SI sec 
Space-Dislocation Δr in SI m  Time- Dislocation Δτ in SI sec 

Life-Time Δt in SI sec  Life-Space Δξ in SI m3 
c = 2.9979 x 108 m/sec χ = 960πc2/hG χ = 6.1123 x 1063 sec/m2 

G = 6.67300 × 10-11  m3 /kg sec2  h= 960πc2/G χ h = 6.626068 × 10-34 m2 kg /sec 
Mass M in SI kg O=Mc2/ χ Mater O in SI kgR=kg m5/sec3 

Mass-Energy E=Mc2 in SI J ϖ=E χ Mater-Viscidity ϖ= O χ 2 in SI Pa.sec 
Speed  v =Δr/Δt in SI m/sec cvΠ /χ= Pace  Π=Δτ/Δξ  in  SI sec/m3 

Momentum p=Mv in SI kg.m/sec pc=υ Endurance υ=OΠ in SI Joule
Average Force  f=Δp/Δt  in  SI N Πv c   ff == χγ Average Press  γ =Δυ/Δξ   in  SI Pa 

Work W=f Δr in SI J χWΨ = Effort Ψ=γΔτ  in SI Pa.sec 
Wave  Weave 

Wavelength λ  in SI m  Weavelength  l  in SI sec
Frequency f in SI λ cycles/sec  Surface Fix φS in l cyclesl / m2 

Wave  Speed  v =λ f  Weave Surface Pace ΠS= lφS 
Spectrum 

(The Frequency-Wavelength Domain) 
 Spread 

(The Fix-Weavelength Domain) 
Bandwidth 

(Spectrum of Relevant Frequencies) 
 Bevywidth 

(Spread of Relevant Fixes) 
 
First in Table 1 selected physics LT-motion/IS-retention terms, dualities and bridges are summarized. They are: 
 
• A black-hole is the retention dual of a vacuum. While a vacuum exhibits the least resistance to the motion of 

matter, a black-hole exhibits the least resistance to the retention of matter. 
• The retention-space variable ξ in SI m3 is the retention dual of the motion-time variable t in SI sec. While in 

motion problems physical variables are often investigated assuming an ideal motion environment, i.e., a 
vacuum, as t varies independently of them, in retention problems physical variables are often investigated 
assuming an ideal retention environment, i.e., a black-hole, as ξ varies independently of them. 

• The retention-time variable τ (ξ ) in SI sec is the retention dual of the motion-space variable r(t) in SI m. While 
r is a function of the motion-time t, τ  is a function of the retention-space ξ.  

• The retention time-dislocation Δτ in SI sec is the retention dual of the motion space-dislocation Δr in SI m. 
While Δr is the distance between two points in motion-space, Δτ in the distance between two points in 
retention-time. 

• The retention life-space Δξ in SI m3 is the retention dual of the motion life-time Δt in SI sec. While Δt is the 
motion life-time used to achieve some desired space-dislocation Δr, Δξ is the retention life-space used to 
achieve some desired time-dislocation Δτ. 

• The retention pace of dark in a black hole χ is the retention dual of the motion speed of light in a vacuum c. 
There is a bridge equation from c to χ  mediated by the Plank and gravitational constants h and G, i.e. 
χ=960πc2/hG. While in a vacuum mass-less energy movers such as photons achieve the speed of light upper 
limit c, in a black-hole mater-less viscidity retainers (viscidity in SI Pa.sec is the retention dual of energy in SI 
J) such as portages (the retention dual of photons) achieve the pace of dark upper limit χ. 

• The retention Plank constant h in SI m2kg/sec is the retention dual of the motion gravitational constant G in SI 
m3/kg sec2. There is a bridge equation from G to h mediated by c and χ, it is h=960πc2/G χ.  
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• The retention mater O in SI kgR=kgm5/sec3 is the retention dual of the motion mass M in SI kg. There is a bridge 
equation from M to O mediated by c and χ, it is O=Mc2/χ.  

• The retention mater-viscidity (or O-ϖ) equation ϖ= O χ 2 is the retention dual of the motion mass-energy (or 
M-Ε) equation E=Mc2. The retention viscidity ϖ  in SI Pa.sec is the retention dual of motion energy E in SI J. 
There is a bridge from E to ϖ mediated by χ, it is ϖ =E χ.  

• The retention pace Π=Δτ/Δξ in SI sec/m3 is the retention dual of the motion speed v =Δr/Δt in SI m/sec. While 
the motion speed v is the ratio of the space-dislocation achieved, Δr, per life-time used, Δt, the pace Π  is the 
ratio of the time-dislocation achieved, Δτ, per life-space used, Δξ. There is a bridge equation from v to 
Π mediated by the pace of dark χ and speed of light c, it is Π=v χ /c. While the maximum achievable speed is 
that of pure energy such as mass-less photons in a vacuum moving at the speed of light c, the maximum 
achievable pace is that of pure viscidity such as mater-less portages in a UNBH retaining at the pace of dark χ. 

• The retention endurance expression υ=OΠ  is the retention dual of the motion momentum expression p=Mv. 
The retention endurance υ in SI J is the retention dual of motion momentum p in SI kg.m/sec. There is a bridge 
equation from p to υ mediated by c, it is υ =pc.  

• The retention average press γ =Δυ/Δξ is the retention dual of the motion average force f=Δp/Δt. The retention 
press γ in SI Pa is the retention dual of motion force f in SI N. There is a bridge equation from f to γ either 
mediated by c and Π, it is γ = f cΠ, or by v and χ, it is γ = f v χ.  

• The retention effort expression Ψ=γΔτ is the retention dual of the motion work expression W=f Δr. The 
retention effort Ψ  in SI Pa.sec is the retention dual of motion work W in SI J. There is a bridge equation from 
W to Ψ mediated by χ, it is Ψ=W χ.  

• The retention weave is the retention dual of the motion wave. 
• The retention weavelength l in SI sec is the retention dual of the motion wavelength λ in SI m. 
• The retention fix φ in weavelength cyclesl per SI cubic meter (or cyclesl /m3) is the ‘volume’ retention dual of 

the motion frequency f in SI λ cycles/sec. φS  in cyclesl /m2 is the ‘surface’ retention version of φ. 
• The retention weave pace expression Π=lφ is the ‘volume’ retention dual of the motion wave speed expression 

v =λ f. ΠS=lφS in SI sec/m2 is the ‘surface’ version of Π=lφ. 
• The retention spread is the retention dual of the motion spectrum. While the spectrum describes the motion 

characteristics of matter from a frequency-wavelength domain perspective, the spread describes the retention 
characteristics of matter from a fix-weavelength domain perspective. 

• The retention bevywidth is the retention dual of the motion bandwidth. While bandwidth describes the spectrum 
of relevant frequencies-wavelengths of matter in motion, bevywidth describes the spread of relevant fixes-
weavelengths of matter in retention. 

 
Next in Table 2 selected statistical physics terms, dualities and bridges of LT-certainty lingerdynamics and IS-

uncertainty thermodynamics are stated. They are: 
 
• The dimensionless lingerdynamics-ectropy Z is the LT-certainty dual of the dimensionless thermodynamics-

entropy S/ln2k=Sk. While Sk=H is characterized by ‘mathematical’ bit units, Z=K is characterized by 
‘mathematical’ bor units. There is a bridge equation from Sk to Z, it is kSZ = .  

• The viscidity lingerature L&&&  in SI Pa.sec is the LT-certainty dual of the energy temperature kTT =&&& in SI J where 
T is the standard definition of temperature in SI K. There is a bridge equation from T&&&  to L&&& , it is χTL &&&&&& = . 

• The hover Λ in SI Pa.sec is the LT-certainty dual of the heat Q in SI J. While the heat Q spontaneously 
transfers from a highT&&& , i.e. T&&& High, to a low T&&& , i.e. T&&& Low, the hover Λ spontaneously transfers from a high L&&& , i.e. 
L&&& High, to a low L&&& , i.e. L&&& Low. There is a bridge equation from Q to Λ, it is Λ=Qχ. 

• The dimensionless hover capacity under constant duration cτ and constant press cγ are the LT-certainty duals of 
the dimensionless heat capacity under constant volume cV and constant pressure   cP.  There is a bridge equation 
from cV to cτ, it is the equality cτ= cV. There is also a bridge equation from cP to cγ, it is the equality cγ= cP.    

• The internal viscidity LJcΘ p
&&& τ=  in SI Pa.sec is the LT-certainty dual of the internal energy TJcU pV

&&& = in 

SI J of a gas. Jp is the number of particles in the gas. There is a bridge equation from U to Θ, it is Θ =Uχ.    
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Table 2.  Selected Statistical Physics Terms, Dualities and Bridges. 

 
IS-Uncertainty Thermodynamics 
(About Work and Heat Transfer) 

Bridge LT-Certainty Lingerdynamics 
(About Effort and Hover Transfer) 

Dimensionless Thermodynamics-Entropy 
S/ln2k= Sk=H 

kSZ =  Dimensionless Lingerdynamics-Ectropy 
Z=K 

Energy-Temperature kTT =&&& in SI J χTL &&&&&& =  Viscidity-Lingerature L&&& in SI Pa.sec 
Heat  Q in SI J χQΛ = Hover Λ in SI Pa.sec 

Heat Capacity Constants 
cV  and  cP 

cτ=cV   
and cγ=cP

Hover Capacity Constants 
cτ  and  cγ 

Internal Energy TJcU pV
&&& = in SI J Θ=Uχ Internal Viscidity LJcΘ p

&&& τ= in SI Pa.sec 

Energy-Temperature as the ‘Sk=H Rate’ 
of Change of Internal Energy Over ln2 

( ) ( ) ( ) 2ln//2ln//1 HSS ∂∂=∂∂=∂∂== − UUU/kkTT k
&&&  

 
χTL &&&&&& =  

Viscidity-Lingerature as the ‘Z2=K2 Rate’ of 
Change of Internal Viscidity Over ln2 

( ) ( ) 2ln//2ln// 22 KZ ∂Θ∂=∂Θ∂=L&&&  
Pressure Times Space-Scope (or Volume) 

Product Energy PV  in  SI  J= Pa.m3 
 

 χPV=γτ  
Press Times Time-Stay (or Duration)  
Product Viscidityγτ  in  SI  Pa.sec 

The Thermodynamics Gas Law 
TJPV p
&&& =  in SI J 

 
 χPV=γτ  

The Lingerdynamics Gas Law 
LJ p
&&&=γτ  in SI Pa.sec 

Enthalpy Heat 
PVUΗ +=  

 
χΗΞ =  

Ecthalpy Hover 
Ξ=Θ+γτ 

Helmholtz Work 
TUTUA &&&HS 2ln−=−=  

 
χAΓ =  

Helmholtz Effort 
LΘLΘΓ &&&&&& 22 2ln2ln KZ −=−=  

Gibbs Work 
THSTHG &&&H2ln−=−=  

 
χGΥ =  

Gibbs Effort 
LΞLΞΥ &&&&&& 22 2ln2ln KZ −=−=  

The 0th Law  of Thermodynamics 
(About Thermal Equilibrium Among Bodies) 

From kTT =&&& Definition 

 
χTL &&&&&& =  

The 0th Law  of Lingerdynamics 
(About Linger Equilibrium Among Bodies) 

From L&&& Definition 
The 1st Law  of Thermodynamics 

(About Conservation of Energy) 
ΔU = ΔQ - ΔW 

 
χUΘ Δ=Δ  

The 1st Law of  Lingerdynamics 
(About Conservation of Viscidity) 

ΨΛΘ ΔΔ=Δ -  
The 2nd Law of Thermodynamics 

(About Non-Conservation of Entropy) 
0 2ln/ ≥== HS δδδ kTQ  

 
k2ln/SZ δδ =  

The 2nd Law of  Lingerdynamics 
(About Non-Conservation of Ectropy) 

02ln/2ln 22 ≥== KZ δδδ LΛ &&&  
The 3rd Law of Thermodynamics 

(About Impossibility of Zero Temperature) 
0≠T  

χkTL =&&&  The 3re Law of  Lingerdynamics 
(About Impossibility of Zero Lingerature) 

0≠L&&&  
PV Diagram and its Cycles  γτ Diagram and its Cycles 
Spontaneous Heat Engines 

LowHigh TT &&&&&& ⇒  
 Spontaneous Hover Engines 

LowHigh LL &&&&&& ⇒  

Non-Spontaneous Work Engines 
LowHigh TT &&&&&& ⇐  

 Non-Spontaneous Effort Engines 
LowHigh LL &&&&&& ⇐  

Carnot Heat Engine Max. Efficiency 
( ) HighLowHigh T/TT &&&&&&&&& −  

 Carnot Hover Engine Max. Efficiency 
( ) HighLowHigh L/LL &&&&&&&&& −  
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• The equation ( ) 2ln// 2Z∂∂= ΘL&&& ( ) 2ln// 2K∂∂= Θ  defining the viscidity-lingerature L&&&  as the ‘Z2=K2 rate’ of 

change of internal viscidity over ln2 is the LT-certainty dual of the equation ( ) 1−∂∂== U/kkTT S&&&  
( ) ( ) 2ln//2ln// HS ∂∂=∂∂= UU k

 defining the energy-temperature T&&& as the ‘Sk=H rate’ of change of internal 
energy over ln2. 

• The press times time-stay (or duration) product γτ is the LT-certainty dual of the IS-uncertainty pressure times 
space-scope (or volume) product PV. There is a bridge equation from PV to γτ , it is γτ=PVχ. 

• The lingerdynamics gas law LJ p
&&&=γτ is the LT-certainty dual of the thermodynamics gas law TJPV p

&&& = . 

There is a bridge from the thermodynamics to lingerdynamics gas law, it is γτ=PVχ.  
• The ecthalpy hover Ξ=Θ+γτ in SI Pa.sec is the LT-certainty dual of the enthalpy heat PVUΗ += in SI J.  

There is a bridge equation from Η  to Ξ, it is χΗΞ = .    
• The Helmholtz effort LΘLΘΓ &&&&&& 22 2ln2ln KZ −=−=  in SI Pa.sec is the LT-certainty dual of the Helmholtz 

work TUTUA &&&HS 2ln−=−=  in SI J.  There is a bridge equation from A  to Γ, it is χAΓ = .  
• The Gibbs effort LΞLΞΥ &&&&&& 22 2ln2ln KZ −=−=  in SI Pa.sec is the LT-certainty dual of the Gibbs work 

THSTHG &&&H2ln−=−=  in SI J.  There is a bridge equation from G  to Y, it is χGΥ = .  
• The 0th law of lingerdynamics (about the linger equilibrium among bodies) is the LT-certainty dual of the 0th 

law of thermodynamics (about the thermal equilibrium among bodies). While the 0th law of thermodynamics 
arises from the energy temperature T&&& definition, the 0th law of lingerdynamics arises from the viscidity 
lingerature L&&& definition. There is a bridge from T&&& to L&&& , it is χTL &&&&&& = . 

• The 1st law of lingerdynamics (about the conservation of viscidity, i.e., ΨΛΘ ΔΔ=Δ - ) is the LT-certainty dual 
of the 1st law of thermodynamics (about the conservation of energy, i.e.,  ΔU = ΔQ - ΔW). There is a bridge 
equation from ΔU to ΔΘ, it is ΔΘ =ΔU χ. 

• The 2nd law of lingerdynamics (about the non-conservation of ectropy, i.e., 02ln/2ln 22 ≥== KLΛZ δδδ &&& ) is 
the LT-certainty dual of the 2nd law of thermodynamics (about the non-conservation of entropy, i.e.,  

0 2ln/ ≥== HkTQS δδδ ). There is a bridge equation from δS to δZ, it is k2ln/SZ δδ = . 
• The 3th law of lingerdynamics (about the impossibility of zero lingerature, i.e., 0≠L&&& ) is the LT-certainty dual 

of the 3th law of thermodynamics (about the impossibility of zero temperature, i.e., 0≠T ). There is a bridge 
from T to L&&& , it is χkTL =&&& . 

• The γτ diagram and its associated cycles is the LT-certainty dual of the PV diagram and its cycles. While a 
clockwise movement on the PV diagram cycle delivers work in the γτ diagram delivers effort.  

• The spontaneous hover engine is the LT-certainty dual of the IS-uncertainty spontaneous heat engine. While an 
spontaneous heat engine is linked to a spontaneous heat transfer from a higher energy-temperature HighT&&& to a 

lower energy-temperature LowT&&& , an spontaneous hover engine is linked to a spontaneous hover transfer from a 
higher viscidity-lingerature HighL&&& to a lower viscidity-lingerature LowL&&& . 

• The non-spontaneous effort engine is the LT-certainty dual of the IS-uncertainty non-spontaneous work engine 
(i.e., cooling and heating systems). While a non-spontaneous work engine results in a non-spontaneous heat 
transfer from a lower energy-temperature LowT&&& to a higher energy-temperature HighT&&& , a non-spontaneous hover 

engine results in a non-spontaneous hover transfer from a lower viscidity-lingerature LowL&&& to a higher viscidity-
lingerature HighL&&& . 

• The Carnot hover engine maximum efficiency HighLowHigh L/LL &&&&&&&&& )( −  is the LT-certainty dual of the IS-uncertainty 

Carnot heat engine maximum efficiency HighLowHigh T/TT &&&&&&&&& )( − . 
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Next Table 3 summarizes the UNBH and ideal gas statistical physics bridges between their IS-entropy and LT-
ectropy terms. In Appendix B each of the entries in this table are discussed. 
 

 
Table 3. Summary of the UNBH and Ideal Gas Statistical Physics Bridges. 

 
IS-Uncertainty Entropy Terms Bridge LT-Certainty Ectropy Terms 

UNBH Entropy Bridges 
BitEHEHEHEHk, /NNNHS

EH
=== Sφ  EHk,EH SZ =    UNBH Ectropy Bridges 

BorEHEHEHEHEH /AAAKZ ===  f  

( )222 /244 cGMr EHππ ==EHN  24/ cEHEH NA π=  3/2/ cGMcr ππ EHEHA ==  

( )222 /244/1 cGMr BitSEH
ππφ =Δ==BitN  24/ cBitBor NA π=  3/2//1 cGMcrfEH ππ BitBorA =Δ==

EHlr /)3//()( 2 ττ === χBitBitEHBitEH N/MM/NN BitEHBorEH /NN/AA = EHlr /)3//( ττλππ ===== χBitEHBorBitEHBorEH Nr/r/cA/MM/AA

3/χBitNrlEH =  rEH  4/ 3 χEHlπλ = BorEH cA=λ  

2ln1920//1 χc
EHS == BitNφ  πφ /4 2

EHScf =EH
 2ln480//1 3 πχcfEH == BorA  

3/χrlΠ EHSS EHEH
==φ  rΠcv

EHSEH χ/3 2= cfv EHEHEH == λ  

τ// EHl=EHBit MM  τπλ / / EHEH lr = r // πλEHEHBit MM =  

Single Species Ideal Gas Entropy Bridge 
( )IGIGIGSIGIGk, N/NNHS

IG
Δ=== φ2logJ  IGk,IG SZ =  Single Species Ideal Gas Ectropy Bridge 

( )2
2

22 log IGIGIGIGIG A/AAKZ Δ=== IGfJ  

( )222 /244 eIG vGMr ππ ==IGN  24/ vIGIG NA π=  vvGMvr eIG
2/2/ ππ ==IGA  

( )222 /244/1 eIGS vMGr
IG

Δ=Δ==Δ ππφIGN  24/ vIGIG NA Δ=Δ π  vvMGvrf eIGIG
2/2//1 ππ Δ=Δ==Δ IGA

( ) IGIGIGIGIGIG NM/MN/N lΠr /)3//(2 ττ =Δ=Δ=Δ IGIGIGIG N/NA/A Δ=Δ IGIGIGIGIGIGIGIG NM/Mr/Ar/A/A lΠrv /)3//( ττλππ =Δ=Δ==Δ=Δ

3/ΠrlIG IGNΔ=  rΠIG  4/ 3 IGlπλ = IGIG AvΔ=λ  
32/32/3 3/)2(/1 hJTmkTgerT PV
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cc
S πφ =Δ= IGN πφ /4 2

IGSvf =IG
32/32/52 3/)2(4/1 hJTmkTgerTvf PV cc
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IGIG

φ  ΠrΠvv
IGSIG /3 2= vfv IGIGIG == λ  

τ// IGl=Δ IGIG MM  τπλ / / IGIG lr =  r // πλIGIGIG MM =Δ  

Gibbs Theorem for Thermodynamics-
Entropy of Ideal Gas With Q Different 

Types of Molecule Species 
( ) /ln 
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Q

i i
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i
Q

i
BJeTVJk PV

IGIG,iIG SS  

,/
1
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=

Q

i ii gXTB   kTmh iπ2/=iX  
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Types of Molecule Species 
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Q

i i
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i
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i
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Fig. 3. The KAHN counter-clockwise statistical physics bridge sequence K A H N from the  
LT-certainty ectropies K A to the IS-uncertainty entropies H N of the LIT revolution. 

 
F. The Statistical Physics Bridges Viewed from the LIT Revolution Perspective 

In Fig. 3 the principal statistical physics bridge results of the LIT revolution discussed earlier are conveniently 
displayed. From this figure it is first noted that the entropy/ectropy bridge relationship 22/ vNA π= of the physical-life 
quadrants is medium independent. This medium independence is also found to be true for the entropy/ectropy bridge 
relationship HK = of the mathematical-intelligence quadrants. On the other hand, it is also seen from Fig. 3 that when 
one crosses any boundary between a physical-life quadrant and a mathematical-intelligence quadrant the relationships 
among the entropies, ectropies or any combination of them becomes medium dependent. For instance, it is noted that 
while the bridge relationship between the mover-ectropy A of the physical-life quadrant I and the processor-ectropy K of 
the mathematical-intelligence quadrant IV is linear for a black hole since BorEHEH AAK /= , it is nonlinear for an ideal 

gas since ( )2
2 /log IGIGIG AAJK Δ= .  

It is also of interest to note from Fig. 3 the medium independent quadratic relationship   
2)/( MMl Δ=τ                                                                    (66) 

between the ratio of a retained mass M to the fractional mass ΔM that escapes it every l seconds, and the retention 
lifespan τ in SI seconds of M. Since (66) is medium independent it will be used in the next section to investigate the 
lifespan of biological systems. 
 

4. An Illustrative Biochemistry Example 
 

It is expected that the novel statistical physics bridge expressions summarized in Table 3 and also partially in Fig. 3 
will find applications in diverse fields [11]. An interesting case that is discussed next is the study of the relationship 
between lifespan and daily caloric intake of biological systems. Since the human lifespan and macroscopic parameters 
are relatively well known, a preliminary study will be pursued for this case. For instance, the maximum human lifespan 
is known to be longer than 120 years where the longest unambiguously documented lifespan is that of 122 years and 164 
days by Jeanne Calment of France (1875-1997). It is also well known that our cells are made mostly of water H2O 
molecules with a molar mass of 18.0151 g/mol. More specifically, for a typical cell approximately 65 % of its mass is 
from H2O molecules which also constitute 98.73 % of all cell molecules [12]. Furthermore, the internal temperature of 
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our bodies is of approximately 310 K. Using H2O molecules in our preliminary study and an assumed lifespan it will be 
seen that expression (66) predicts a daily caloric intake that correlates well with expectations. 

The development begins by using Clausius’ definition of thermodynamics-entropy [10] to model the daily digestion 
of food of mass ΔM with the expression 

ΔSDig=ΔQ/TDig=C1C2ΔM/TDig  in SI J/K units                                                   (67) 
where ΔQ denotes the heat energy in SI J units of the digested food, TDig is the temperature of digestion in SI K units, 
C1=4.2 J/cal is the amount of energy produced per calorie and C2=5,000 kcal/kg is the average amount of kilocalories 
per digested kilogram. The product of C2 and ΔM, i.e. C2ΔM thus yields the amount of kilocalories digested per day. 

On the other hand, it is assumed that a matching or similar amount of mass ΔM in the form of a gas is exhaled daily 
by the human body. In this way the body mass M remains unaltered from day to day. Associated with this gas exhalation 
is the Boltzmann thermodynamic-entropy ΔSExh = Sf – Si where Si is the thermodynamics-entropy when the day begins 
and Sf >Si is when it ends. From (49) it is noted that ΔSExh  is given by 

( ) ( )
IGIG,iIG,fIGIG,iiIGIG,fiifExh kJJJk NNNNNNNSSS ==Δ−ΔΔ+=−=Δ /ln/ln)(  

( ))3//(/3/ln ΠNrNrVNNJk IGIGIGIG Δ=Δ=ΔΔ= τ                                          (68) 

( )222 /24 4 eIG vGMrN ππ ==                                                              (69) 

( )222 /244/1 eSIG vMGrN
IG

Δ=Δ==Δ ππφ                                                       (70) 

( ) ( ) ( ) 3// 2 2/322/5 /MrhkTem
IGS πσφ =                                                      (71) 

2/32/5 −−= V
Exh

P cc Tegσ                                                                    (72) 
2/3/ rmsi vkTJMm ==                                                                   (73)    

           2/2/ evGMr =                                                                           (74)  

1  and  2/ +== VPfV ccdc                                                               (75) 

  V =τ /Π = 4πr3/3 = M/1000                                                                 (76) 
where: 1) τ and Π in (68) and (76) denote lifespan in seconds and retention pace in sec/m3, respectively; 2) the term 
rΔNIGΠ/3 in (68) corresponds to the time-dislocation of M or weavelength l=rΔNIGΠ/3=86,400 seconds for a single day; 
3) Ji signifies the number of H2O molecules that make up M; 4) ΔJ denotes the number of unknown particles forming the 
exhaled gas mass ΔM;  5) Eq. (76) assumes that the human mass density is that of liquid water, thus, for instance, if 
M=70 kg (154.3  lbs) then V=0.07 m3 and r = 0.2557 m; and 6) T is the exhale temperature.  

The Clausius thermodynamics-entropy (67) and the Boltzmann thermodynamics-entropy/retainer-entropy (68) 
expressions are next equated to yield 

( )( )2/400,86//ln/000,000'21 MMNNJkTM IGIGDig Δ==ΔΔ=Δ τ .                                     (77) 

From (77) or (66) the following relationship between the digested/exhaled (or fractional) mass ΔM and the assumed 
lifespan τ  for a given mass M is found to be 

yearsMMM ττ 365/400,86// ==Δ                                                       (78) 

where τyears corresponds to the number of years associated with the specified τ in seconds. Notice from (78) that when 
the lifespan τyears  is increased in value, the amount of daily digested/exhaled mass ΔM decreases as is expected. 

The statistical physics bridge equations (68)-(78) can then be solved under different assumptions for M, τ, etc. For 
example, when M=70 kg, τyears=130 (i.e. τ=4.0997 Gsec), TDig=T=310 K and df=16.1 for H2O at 310 K, it is found that 
ΔM = 0.3214 kg for a daily caloric intake of C2ΔM=1,607 kcal (other results derived from (78) with M=70 kg are 
C2ΔM=1,827 kcal if τyears=100, C2ΔM=2,000 kcal if τyears=83.9, etc.). The remaining operating values for τyears=130 are: 
1) σ=1.6672; 2) V=0.07 m3; 3) r=0.2557 m; 4) NIG=0.8412 m2; 5) ΔNIG =1.7311 x 10-5 m2; 6) Ji=2.34 x 1027 H2O 
molecules; 7) ΔJ=1.4643 x 1026 particles in ΔM with an average molar mass for ΔM of 1.3216 g/mol (e.g. this molar 
mass is satisfied by carbon dioxide CO2 molecules with a total mass of 0.1736ΔM=0.0558 kg, water H2O molecules with 
a total mass of 0.0714ΔM=0.0229 kg and hydrogen H atoms with a total mass of 0.755ΔM=0.2427 kg); 8) a particle 
escape speed of ve=19.118 mm/sec; 9) a particle kinetic rms speed of vrms=655.1496 m/sec; 10) a retention pace of 
Π=58.567 Gsec/m3; 11) a surface fix of 

IGSφ =57.768 kcyclesl/m2; and 12) a surface pace of 
IGSΠ =

IGSφ l=4.9911 
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Gsec/m2. Finally, it is noted that the previous preliminary study can be readily extended via the multi-species ideal gas 
model of Table 3 to more elaborate molecular models for M. In Appendix C a two-species extension is given.  

 
5. Conclusions 

 
This paper revealed statistical physics bridges for the four quadrants of the latency information theory (LIT) 

revolution that included the discovery of the time dual of thermodynamics. While the physical-life quadrants I and III of 
the LIT revolution addressed the efficient use of the life time of physical signal movers and the life space of physical 
signal retainers, respectively, the mathematical-intelligence quadrants II and IV of the LIT revolution addressed the 
efficient use of the intelligence space of mathematical signal sources and the processing time of mathematical signal 
processors, respectively. Several statistical physics bridge results were derived. First, it was found that thermodynamics 
advanced via its thermodynamics-entropy a medium dependent bridge between the IS-uncertainty source-entropy of 
quadrant II and the IS-uncertainty retainer-entropy of quadrant III. Second, it was found that there is an inherent medium 
independent bridge between the LT-certainty mover-ectropy of quadrant I and the IS-uncertainty retainer-entropy of 
quadrant III. This observation then led to the discovery of the LT-certainty dual of IS-uncertainty thermodynamics that 
was named lingerdynamics. Lingerdynamics was then found to establish via its own lingerdyanmics-ectropy a medium 
dependent bridge between the LT-certainty mover-ectropy of quadrant I and the LT-certainty processor-ectropy of 
quadrant IV thus yielding a complete statistical physics bridge for the entropies and ectropies of the LIT revolution. For 
the specific cases of a UNBH medium and an ideal gas medium, complete statistical physics bridges for the LIT 
revolution were revealed. The paper ended with a human lifespan example that illustrated the discovery of a medium 
independent quadratic relationship between the lifespan of a mass in a volume and the ratio of this mass to the fractional 
mass that escapes it over some specified cyclic time span, e.g. the 86,400 seconds of a single day. In particular, this 
human example revealed  for each assumed human lifespan a daily caloric intake that correlated well with expectations.  
 

Appendix A 
The Derivation of the Entropy Statistical Physics Bridge for an Ideal Gas 

 
In this appendix the entropy statistical physics bridge expression for an ideal gas (25), i.e., 

 ( ) ( )( )2
2 ///log  2ln/)/ln(2ln IGIGIGIGIGIGIGIGIG MMNNVHS Δ==Δ=+Β== lJcJTJk/ P

cV τ ,        (A.1) 
is derived. The derivation starts with the Boltzmann thermodynamics-entropy for an ideal gas [10] 

 ( ) )/ln( P
c

IG cJΒTVkJ V +=IGS                                                                (A.2) 
B=T3/2X3/g                                                                                (A.3) 

mkTh π2/=Χ                                                                             (A.4) 
where all the variables in (A.1)-(A.4) where defined earlier in (25)-(33). Next substituting (A.4) in (A.3) one derives 

2/33 )2(/ mkghB π= .                                                                        (A.5) 

Next using (A.5), VIG=rNIG/3, m=MIG/J and Pc
P ec ln= in (A.2) it follows that 

( ) )ln( )/ln( )/ln( IGIGIGIG NS
IGS

cc
P

c kJJΒeTVkJcJΒTVkJ PVV φ==+=                                 (A.6) 

( ) ( ) ( ) 3// 2 2/322/5 /MrhkTem IGSIG
πσφ =                                                       (A.7) 

    2/32/5 −−= VP cc Tegσ                                                                        (A.8) 
Next it is noticed that the sphere based retainer-entropy NIG is given by the expression 

( )222 /244/3 evGMrrV IGIGIGN ππ ===                                                          (A.9)    

rGMv IGe /2=                                                                         (A.10)      
where ve is the escape speed from the NIG sphere that has at its center the gas mass MIG that is assumed in this model to 
be a point-mass. Next, similarly as in (16)-(19), (24) for a UNBH the dimensionless argument 

IGSφ NIG of the natural 
algorithm in (A.6) is modeled as follows 

 
IGSφ NIG =NIG/ΔNIG =τIG/lIG =(MIG/ΔMIG)2                                                          (A.11)  
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( )222 /244/3 evMGrrV IGIGN Δ=Δ=ΔΔ=Δ ππ                                                  (A.12) 

ΠIGIG V=τ                                                                               (A.13) 
3/  rΠl IGIG NΔ=                                                                          (A.14)  

where: 1) ΔNIG is assumed to be a small fractional retainer-entropy, i.e., ΔNIG << NIG, that retains a small fractional 
mass ΔMIG, i.e., ΔMIG<<MIG, in its sphere of radius Δr, and whose molecules can escape the gas at a speed greater than 
or equal to the gas escape speed ve; 2) Π is the pace of retention in SI sec/m3 of the ideal gas in the volume VIG; 3) τIG is 
the lifespan of the ideal gas; and 4) lIG is the cyclic time span (or weavelength) of escape from the ideal gas mass MIG of 
the fractional mass ΔMIG. Expression (A.1) then surfaces when (A.11) is substituted in (A.6) and the resulting expression 
for SIG is substituted in SIG /ln2k=HIG. 
 

Appendix B 
The Discussion of the Statistical Physics Bridges Summarized in Table 3 for the UNBH and Ideal Gas 

In this appendix the entries of Table 3 are discussed starting from the top of the table and then moving down on it: 
• The UNBH ectropy bridge BorEHEHEHEHEH /AAAKZ === f  is the LT-certainty dual of the UNBH entropy 

bridge 
BitEHEHEHEHk, /NNNHS

EH
=== Sφ . The bridge from Sk,EH to ZEH is 

EHk,EH SZ = . Regarding these 

bridge expressions the following seven notes are made: 
1. The mover-ectropy expression 3/2/ cGMcr ππ EHEHA ==  is the LT-certainty dual of the retainer-

entropy expression ( )222 /244 cGMr EHππ ==EHN . The bridge from NEH to AEH is 24/ cEHEH NA π= . 

2. The bor mover-ectropy expression 3/2//1 cGMcrf ππ BitEHBorA =Δ==  is the LT-certainty dual of the 

bit retainer-entropy expression ( )222 /244/1 cGMr BitS ππφ =Δ==
EHBitN . The bridge from NBit to ABor is 

24/ cBitBor NA π= . 

3. The mover-ectropy ratio expression 
EHlr /)3//( ττλππ ===== χBitEHBorBitEHBorEH Nr/r/cA/MM/AA  is 

the LT-certainty dual of the retainer-entropy ratio expression 2)( BitEHBitEH /MM/NN =  

EHlr /)3//( ττ == χBitN . The bridge from NEH /NBi to AEH/ABor is BitEHBorEH /NN/AA = . 

4. The bor wavelength expression BorEH cA=λ  is the LT-certainty dual of the bit weavelength 

expression 3/χBitNrlEH = . The bridge from λEH to lEH is rEH  4/3 χEHlπλ = . 

5. The bor frequency expression 2ln480//1 3 πχcfEH == BorA  is the LT-certainty dual of the bit 

surface fix expression 2ln1920//1 χc
EHS == BitNφ . The bridge from 

EHSφ to fEH is πφ /4 2
EHScf =EH

. 

6. The bor velocity expression cfv EHEHEH == λ is the LT-certainty dual of the bit surface pace 

expression 3/χrlΠ EHSS EHEH
==φ . The bridge from 

EHSΠ to vEH is rΠcv
EHSEH χ/3 2= . 

7. The relationship rπλ // EHEHBit MM = equating the mass fraction EHBit MM / to its wavelength to 

space-dislocation fraction rπλ /EH  is the LT-certainty dual of the square root relationship 

τ// EHl=EHBIt MM  relating the mass fraction EHBit MM / to its weavelength to time-dislocation 

squared  fraction τ/EHl . The bridge from  τ/EHl  to r /πλEH  is τπλ / / EHEH lr = . 
• The single species ideal gas ectropy bridge ( )2

2
22 log IGIGIGIGIG A/AAKZ Δ=== IGfJ  is the LT-certainty dual of the 

single species ideal gas entropy bridge ( )IGIGIGSIGIGk, N/NNHS
IG

Δ=== φ2logJ . The bridge from Sk,IG to ZIG is 

IGk,IG SZ = . Regarding these bridge expressions the following seven notes are made: 

1. The mover-ectropy expression ( )222 /2)/( vvGMvr eIGππ ==2
IGA  is the LT-certainty dual of the retainer-

entropy expression ( )222 /244 eIG vGMr ππ ==IGN . The bridge from NIG to AIG is 24/ vIGIG NA π= . 
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2. The mover-ectropy expression ( )2222 /2)/(/1 vvMGvrf eIGIG ππ Δ=Δ==Δ 2
IGA  is the LT-certainty dual of 

the retainer-entropy expression ( )222 /244/1 eIGS vMGr
IG

Δ=Δ==Δ ππφIGN . The bridge from ΔNIG to ΔAIG  

is 24/ vIGIG NA Δ=Δ π . 

3. The mover-ectropy ratio expression ( ) IGIGIGIGIGIGIGIG NM/Mr/Ar/A/A lrv /)3//(2
ττλππ =ΠΔ=Δ==Δ=Δ  

is the LT-certainty dual of the retainer-entropy ratio expression 
( ) IGIGIGIGIGIG NM/MN/N lΠr /)3//(2 ττ =Δ=Δ=Δ . The bridge from NIG/ΔNIG to AIG/ΔAIG is 

IGIGIGIG N/NA/A Δ=Δ .  

4. The IG wavelength expression IGIG AvΔ=λ  is the LT-certainty dual of the IG weavelength expression 

3/ΠrlIG IGNΔ= . The bridge from λIG to lIG is rΠIG  4/3 IGlπλ = . 

5. The IG frequency expression 32/32/52 3/)2(4/1 hJTmkTgerTvf PV cc ππ=Δ= IGIG A  is the LT-

certainty dual of the surface fix expression 32/32/3 3/)2(/1 hJTmkTgerT PV

IG

cc
S πφ =Δ= IGN . The 

bridge from 
IGSφ to fIG is πφ /4 2

IGSvf =IG . 

6. The IG velocity expression vfv IGIGIG == λ  is the LT-certainty dual of the surface pace expression 

3/rΠΠ == IGSS l
IGIG

φ . The bridge from 
IGSΠ to vIG is ΠrΠcv

IGSIG /3 2= . 

7. The relationship rπλ // IGIGIG MM =Δ  equating the fractional mass fraction IGIG MM /Δ  to its 

wavelength to space-dislocation fraction rπλ /IG  is the LT-certainty dual of the square root 

relationship τ// IGIGIG MM l=Δ  equating IGIG MM /Δ  to its weavelength to time-dislocation 

fraction squared τ/IGl . The bridge from  τ/IGl  to r /πλIG  is τπλ / / IGIG lr = . 

• The third and final topic of Table 3 concerns the Gibbs theorem for the thermodynamics-entropy of an ideal gas 
with Q different types of species [10]. The expression for the ideal gas thermodynamics-entropy SIG is given by 
the sum of the thermodynamics-entropy contributed by the Q species, i.e., ∑ =

=
Q

i 1 IG,iIG SS  

( ) /ln
1∑ =

=
Q

i i
cc

IGi BJeTVJk PV  where ∑ =
=

Q

i ii gXT
1

32/3 /B  and kTmh iπ2/=iX . From this expression it is noted 

that since ( ) /ln BJeTVkJ i
cc

IGi
PV=IG,iS  each species thermodynamic-entropy contribution only varies from 

the others if its number of molecules Ji is different. On the other hand, the ideal gas lingerdynamics-ectropy 
squared ZIG

2 is given by the sum of lingerdynamics-entropy contributed by the Q species squared, i.e., 
( ) /log 

1 21 ∑∑ ==
==

Q

i i
cc

IGi
Q

i
BJeTVJ PV2

IG,i
2
IG ZZ . The bridge from SIG to ZIG is given by

IGZ  2ln/ kIGS= and 

from SIG,i to ZG,i is given by =IG,iZ  2ln/ kIG,iS for all i. Regarding these multi-species thermodynamic-

entropy and lingerdynamics-ectropy expressions the following notes are made:  
1. The Gibbs theorem ectropy bridge ( ) ( )2

1 21
2

,21
222 log log ∑∑∑ ===

Δ====
Q

i i
Q

i iIGi
Q

i
JfJ IG,iIGIGIG,iIGIG A/AAKKZ  is the 

LT-certainty dual of the Gibbs theorem entropy bridge ( )∑∑ ==
===

Q

i ii
Q

i
J

1 ,21
log IGSIG,iIGIGk, NHHS

IG
φ  

( )∑ =
Δ=

Q

i iJ
1 2log IG,iIG, N/N . The bridge from Sk,IG  to ZIG is  IGk,IG SZ = . 

2. The mover-ectropy expression ( )222 /2)/( vvGMvr eIGππ ==2
IGA  is the LT-certainty dual of the retainer-

entropy expression ( )222 /244 eIG vGMr ππ ==IGN . The bridge from NIG to AIG is 24/ vIGIG NA π= . 

3. The mover-ectropy expression ( )22
,

22
, /2)/(/1 vvMGvrf eiIGiiIG ππ Δ=Δ==Δ 2

IG,iA  is the LT-certainty dual of 

the bit retainer-entropy expression ( )222
, /244/1 eiiS vMGr

IG IG,iIG,iN Δ=Δ==Δ ππφ . The bridge from ΔNIG,i to 

ΔAIG,i is 24/ vIG,iIG,i NA Δ=Δ π . 
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4. The mover-ectropy ratio expression ( ) IG,iIG,iIG,iIGIG,iIG,iIG,iIG NM/Mr/Ar/A/A lΠrv /)3//(2 ττλππ =Δ=Δ==Δ=Δ  

is the LT-certainty dual of the retainer-entropy ratio expression ( )2
IG,iIGIG,iIG M/MN/N Δ=Δ  

IG,iIG,iN lΠr /)3//( ττ =Δ= . The bridge from NIG/ΔNIG,i to AIG/ΔAIG,i is 
IG,iIGIG,iIG N/NA/A Δ=Δ .  

5. The IG wavelength expression IG,iIG,i AcΔ=λ  is the LT-certainty dual of the IG weavelength 

expression 3/, Πrl iIG IG,iNΔ= . The bridge from λIG,i to lIG,i is rΠ 4/3 IG,iIG,i lπλ = . 

6. The IG frequency expression ( )∑ =
=

Q

i iii
cc

iIG gkTmhTJerTvf PV

1
2/332/322

, )2/(3/4 ππ  is the LT-certainty 

dual of the surface fix expression ( )∑ =
=Δ=

Q

i iii
cc

iS gkTmhTJerT PV

IG 1
2/332/3

, )2/(3//1 πφ IG,iN . The bridge 

from i,IGSφ to fIG,i is πφ /4 ,
2

iSIG
vf =IG,i . 

7. The IG velocity expression vfv iIGiIGIG == ., λ  is the LT-certainty dual of the surface pace expression 

3/, rΠΠ i == IG.iSS l
IGIG

φ . The bridge from 
IGSΠ to vIG is ΠrΠvv

IGSIG /3 2= . 

8. The ith molecule relationship rπλ // IG,iIGIG,i MM =Δ  equating the fractional mass fraction 

IGIG,i MM /Δ  to its wavelength to space-dislocation fraction rπλ /IG,i  is the LT-certainty dual of the 

square root relationship τ// IG,iIGIG,i MM l=Δ  equating IGIG,i MM /Δ  to its weavelength to time-

dislocation fraction squared τ/,iIGl . The bridge from  τ/,iIGl  to r /πλIG,i  is τπλ / / IG,iIG,i lr = . 

 
Appendix C 

The Extension of the Biochemistry Example of Section 4 to the Two Species Case 
In this appendix the Gibbs theorem of Table 3 for multi-species is used to approximate the Boltzman 

thermodynamics-entropy of a human with the following two species model 
OtherWater SSS +=                                                                          (C.1) 

( )WWWWWWater lΠrkJ /)3//()/(/ln 2 ττ =Δ=Δ=Δ= NMMNNS                                         (C.2) 

( )222 /24 4 evr GMN ππ ==                                                                    (C.3) 

( ) PV

W

cc
WeWWSW erTBJvMGrN /3/244/1 222 =Δ=Δ==Δ ππφ                                          (C.4) 

( )( )OOWW mgmgkhB /1/12/3 += π                                                          (C.5) 
 ( )OOOOOOther lΠrkJ /)3//()/(/ln 2 ττ =Δ=Δ=Δ= NMMNNS                                            (C.6) 

( ) PV

O

cc
OeOOSO erTBJvMGrN /3/244/1 222 =Δ=Δ==Δ ππφ                                             (C.7) 

In particular, the two-species model assumes that 98.73% of the molecules of the human mass M is H2O and the 
remaining 1.37% are of other types (in [12] a typical 20-micron human cell is noted to contain the following percentages 
of different molecules: 1) 98.73% for H2O; 2) 0.74 % for other inorganic; 3) 0.475% for lipid; 4) 0.044% for other 
organic; 5) 0.011% for protein; 6) 3x10-5 % for RNA; and 7) 3x10-11 % for DNA). Thus the number of water molecules 
is 

JW=0.9873J                                                                                (C.8) 
and for the other molecules is 

JO=0.0137J                                                                              (C.9) 
where J is the total number of molecules in M. In [12] it is also stated that 65% of a typical cell mass is H2O with 
18.0151 g/mol. Thus assuming that 65% of M is H2O and that the J to JW relationship of (C.8) holds it follows that 

J = 0.65x1000NAM/(18.0151x0.9873) = 36.545 NAM                                                (C.10) 
where NA is Avogadro’s number. Next using (C.8) and (C.9) in (C.4) over (C.7) it follows that 

( ) 0657.72/// 2 ==ΔΔ=ΔΔ OWOWOW JJMMNN .                                                 (C.11) 

From (C.11) it then follows that 
4892.8// ==ΔΔ OWOW JJMM .                                                             (C.12) 
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Next expressing ΔMW and ΔMO in terms of the total fractional mass ΔM of M where 
OW MMM Δ+Δ=Δ                                                                        (C.13) 

it follows from (C.12) and (C.13) that 
 MMMW Δ=+Δ=Δ 8946.0)4892.8/11/(                                                       (C.14) 

MMMO Δ=+Δ=Δ 1054.0)4892.81/(                                                        (C.15)  
Next using (C.14), (C.15), (C.8) and (C.9) in (C.1), (C.2) and (C.6) the following two species entropy equation results 

( ) ( )2816.0)/ln()1054.0/1ln(0137.0)8946.0/1ln(9873.0)/ln( 2222 +Δ=++Δ= MMMMS kJkJ          (C.16) 
Equation (C.16) can then be used to derive the exhale entropy expression as was done for (68) in Section 4 to yield 

( )( )2816.0/ln 2 +ΔΔ=−=Δ MMSSS JkifExh                                               (C.17) 

lΠr /)3//(/)/( 2 ττ =Δ=Δ=Δ NNNMM                                                  (C.18) 
Finally the Boltzmann exhale entropy (C.17) is equated to the Clausius digestion entropy (67) with the weavelength l 
value set to 86,400 seconds for a single day to yield the digestion/exhale entropy expression 

( )( )( )2816.0/400,86//ln/000,000'21 2 +Δ==ΔΔ=Δ MMNNM τJkTDig .                            (C.19) 
As previously done in Section 4 for the single species case the above equations can then be solved for different 

cases of M, τ, etc. For instance, when M=70 kg, τyears =130 (i.e. τ=4.0997 Gsec) and TDig=T=310 K, it is found that 
ΔM=0.3214 kg for a daily caloric intake of C2ΔM=1,607 kcal, lIG=86.4 ksec, 

IGSφ =57.768 kcyclel/m2, lW=69.147 ksecs, 

WSφ =72.182 kcyclelo/m2, lO=0.960 ksec, 
OSφ =5.2 Mcyclelw/m2, 

IGSΠ =
WSΠ = 

OSΠ =4.9911 Gsec/m2, etc.  
Finally, it should be noted that the two-species methodology discussed in this appendix can be readily extended to 

more than two species via the Gibbs theorem of Table 3. It is hoped that a multi-species model that includes most human 
mass constituents will eventually lead us to exhaled gas molecule quantities and forms that correlate well with 
expectations. Such an outcome should in turn lead us to a better understanding of human lifespan upper bounds. 
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