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Abstract—Statistical physics bridges for latency information theory (LIT) are revealed in this second paper of a three
paper series that include the discovery of the time dual of thermodynamics. LIT is the universal guidance theory for
efficient system designs that has inherently surfaced from the confluence of five ideas. They are: 1) The source entropy
and channel capacity performance bounds of Shannon’s mathematical theory of communication; 2) The latency time
(LT) certainty of Einstein’s relativity theory; 3) The information space (IS) uncertainty of Heisenberg’s quantum
physics; 4) The black hole Hawking radiation and its Boltzmann thermodynamics entropy § in SI J/K; and 5) The
author’s 1978 conjecture of a structural-physical LT-certainty/IS-uncertainty duality for stochastic control. LIT is
characterized by a four quadrants revolution with two mathematical-intelligence quadrants and two physical-life ones.
Each quadrant of LIT is assumed to be physically independent of the others and guides its designs with an entropy if it is
IS-uncertain and an ectropy if it is LT-certain. While LIT’s physical-life quadrants I and III address the efficient use of
life time by physical signal movers and of life space by physical signal retainers, respectively, its mathematical-
intelligence quadrants II and IV address the efficient use of intelligence space by mathematical signal sources and of
processing time by mathematical signal processors, respectively. Seven results are stated next that relate to the revelation
of statistical physics bridges for LIT. They are: 1) Thermodynamics, a special case of statistical physics, has a time dual
named lingerdynamics; 2) Lingerdynamics has a dimensionless lingerdynamics-ectropy Z that is the LT-certainty dual of
a dimensionless thermodynamics-entropy, and like thermodynamics has four physical laws that drive the Universe; 3) §
advances a bridge between quadrant II’s source-entropy H in bit units and quadrant III’s retainer-entropy N in SI m’
units; 4) Z advances a bridge between quadrant I’s mover-ectropy A4 in Sl secs and quadrant [V’s processor-ectropy K in
binary operator (bor) units; 5) Statistical physics bridges are discovered between the LIT entropies and the LIT
ectropies; 6) Half of the statistical physics bridges between the LIT entropies and LIT ectropies are found to be medium
independent, thus yielding the same entropy-ectropy relationships for black holes, ideal gases, biological systems, etc.;
and 7) A medium independent quadratic relationship =I(M/AM)’ relates the lifespan 7 of a retained mass M to the ratio
of M to the fractional mass AM that escapes it every / seconds, e.g., for a human with M = 70 kg, expected lifespan of
7=83.9 years (or 2.65 Gsec), I=1 day (or 86.4 ksec), its daily escaping mass is given by AM=0.4 kg. In turn, this requires
him/her to consume 2,000 kcal per day (i.e., 5,000 kcal/kg times 0.4 kg) to replace the 0.4 kg lost from day to day which
correlates well with expectations.

Index Terms—Statistical physics, information space uncertainty, latency time certainty, communication through
channels, observation across sensors, adaptive radar, black holes, ideal gas, lifespan, relativity, quantum physics

1. Introduction

This paper reveals statistical physics bridges for latency information theory (LIT) that include the discovery of the
latency time (LT) certainty dual of information space (IS) uncertainty thermodynamics. A review paper that presents
some preliminary results of these revelations can also be found in the IEEE Sarnoff 2010 Symposium Proceedings [1].
Moreover, two related publications [2]-[3] complement this manuscript. While in [2] a review of the control roots of LIT
is advanced, in [3] the LIT roots of knowledge-unaided power-centroid adaptive radar are discussed. The manuscript is
organized in three additional sections. In Section 2 the eight performance bounds that LIT uses to guide system designs
are defined and illustrated with simple examples to facilitate the understanding of the derived statistical physics bridges.
In Section 3 the statistical physics bridges are discussed in some detail, inclusive of its enhanced version that contains
lingerdynamics, which is the newly discovered LT-certainty dual of IS-uncertainty thermodynamics. In the last Section 4
a human lifespan example is used to illustrate a result that has surfaced from the investigation of the statistical physics
bridges for LIT. This result is that a quadratic relationship relates the lifespan of a mass to the ratio of this mass over the
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Fig. 1. The LIT revolution with four lower performance bounds [KHAN ()], four upper performance bounds [FICT.
(¢)], and the counter-clockwise ectropies to entropies statistical physics bridge sequence [K = A= H = N |.

fractional mass that escapes it over some specified cyclic time span, e.g. the 86,400 seconds of a single day.
2. The Performance Bounds of the LIT Revolution

Fig. 1 displays the four quadrants of the LIT revolution inclusive of the eight performance bounds of the
mathematical-physical theory of communication-observation which is part of LIT [1]. These four quadrants address
physically independent system design efficiency problems whose performance bounds are nevertheless bridged by
statistical physics bridges as is found in this paper. Following a counter-clockwise description these LIT quadrants are:
1) The mathematical-intelligence LT-certainty/LT-observation quadrant IV that via lower/upper performance bounds
guides the design of processors with an efficient intelligence time (or intel-time), thus giving rise to what is called here,
“the mathematical theory of observation”. The efficiency of the processors is measured by the maximum number of
binary operator (or bor) levels that the mathematical signal (or intelligence) uses as it is processed via multiple paths
from start to finish. The lower bound is the processor-ectropy K in mathematical bor units that guides the design of
efficient intel-time signal-processors. The other upper bound is the dimensionless sensor-consciousness F that guides
the design of efficient sensor and processor integrated (SPI) coders to be described later; 2) The physical-life
LT-certainty/IS-communication quadrant I that via lower/upper performance bounds guides the design of movers with
an efficient life-time, thus giving rise to what is called here, “the physical theory of communication”. The efficiency of
the movers is measured by the maximum number of SI seconds that the physical signal uses as it is moved via multiple
paths from start to finish. The lower bound is the mover-ectropy 4 in physical SI sec units that guides the design of
efficient life-time signal-movers. The other upper bound is the dimensionless channel-stay T that guides the design of
efficient channel and mover integrated (CMI) coders; 3) The mathematical-intelligence IS-uncertainty/IS-
communication quadrant II that via lower/upper performance bounds guides the design of sources with an efficient
intelligence space (or intel-space), thus giving rise to what Claude E. Shannon called, “the mathematical theory of
communication”. The efficiency of the sources is measured by the expected amount of inter-space that the mathematical
signal uses as it is sourced from start to finish. The lower bound is the source-entropy H in mathematical binary digit
(bit) units that guides the design of efficient intel-space signal-sources. The other upper bound is the dimensionless
source-capacity C that guides the design of efficient channel and source integrated (CSI) coders; and 4) The physical-life
IS-uncertainty/L T-observation quadrant I1I that via lower/upper performance bounds guides the design of retainers with
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Fig. 2. The Structural-Physical LT-Certainty/IS-Uncertainty Dualities of the LIT Revolution.

an efficient life-space, thus giving rise to what is called here, “the physical theory of observation”. The efficiency of the
retainer is measured by the expected amount of life-space that the physical signal uses as it is retained from start to
finish. The lower bound is the retainer-entropy NV in physical surface area SI m” units that guides the design of efficient
life-space signal-retainers. The other upper bound is the dimensionless sensor-scope I’ that guides the design of
efficient sensor and retainer integrated (SRI) coders.

The LIT revolution exhibits three major dualities. They are: 1) The vertical LT-certainty/IS-uncertainty duality of
quadrants I, IV and quadrants II, III; 2) The horizontal IS-communication/LT-observation duality of quadrants I, II and
quadrants III, IV, where there are IS-uncertainty and LT-certainty versions for both channels and sensors; and ¢) The
diagonal physical-life/mathematical-intelligence duality of quadrants I, III and quadrants II, IV, which are the two
fundamental and complementary pillars of biological systems. More specifically, one of these pillars is responsible for
the storage and processing of intelligence (the neural networks) and the other for the motion and retention of life which
is enabled by the stored and processed intelligence. Thus from this LIT revolution a nascent efficiency theory for both
living and non-living systems inherently emerges. An obvious question that then surfaces is, “Is there a natural bridge
that may be used to navigate the LIT quadrants?”. As will be seen in Section 3 the answer to this question is on the
affirmative. The desired bridge is advanced by statistical physics in both its classical IS-uncertainty thermodynamics
form [4]-[5] as well as a newly discovered LT-certainty lingerdynamics duality form.

A. The Two Performance Bounds of “The Mathematical Theory of Communication” of LIT’s Quadrant I1
The source-entropy H in bit units is the first performance bound. It is the expected source-information given by

H=E[l(g)]=Y. P(g)l(g)=log, A (M
I(g.)=1log,(1/ Fs(g))) )
A= 222,Ps(g,>15(g,> 3)

where: 1) G € {g,..gq} is a n-dimensional random vector composed of Q vector outcomes {g; gqa}; 2) Is(g) is the g;
source-information in bit units; 3) Pg(g;) is the g; source-probability; and 4) A may be viewed as an effective number of
outcomes, with A=Q for equally likely outcomes. Expression (1) advances a lower performance bound for the intel-
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space of lossless source-coders. A source-coder is any replacement of a given signal-processor. The source-coder is
lossless when its output is the same as that of the given signal-source and lossy when it is not.
The dimensionless channel-capacity C is the second performance bound [6]-[7]. It is the maximum percentage of
the expected source-information that can be extracted without loss from a noisy intel-space channel and is defined by
0<C=(Hy-Hy,)/H, = max [(H,-H, )H,]<1 4)
TR w7 -
where E is the input and F is the output of the channel corresponding to the n-dimensional codewords A and p with a
source-probability distribution {Ps[4;]} that maximizes the mutual source information (g7, - H, )H, (e.g., for a

Mp

memoryless binary symmetric channel {Pgs[4;]} is uniformly distributed, i.e., Ps[4,;]=Ps[A ,]=1/2 [7]). In particular, Hg
is a channel-induced intel-space penalty whose value determines the percentage of the intel-space specified by Hp that
can be time-communicated without loss (or equivalently its probability of error approaches zero). In quadrant II of the
LIT revolution of Fig. 2 the CSI-coder is displayed whose design is guided by C. While the CSI-coder’s source-coder
efficiently compresses intel-space, its channel-coder efficiently uses overhead intel-space for the time-communication of
intel-space through a noisy intel-space channel.

B. The Two Performance Bounds of “The Mathematical Theory of Observation” of LIT’s Quadrant IV
The processor-ectropy K in bor units is the first performance bound. It is the minimax processor-latency given by

K =max[L,(g,),,Ly(g,)]=max[f[Cp(g)].-., /,[Cp(g,)]] (%)

where: 1) g=[g;,..2,] is the n-dimensional signal-processor vector output; 2) Lp(g;) is the g; processor-latency; and 3) the
function £ Cp(g;)]=Lp(g;) conveys the dependence of Lp(g;) on the g; processor-constraint Cp(g;). Expression (5) provides
a lower performance bound for the intel-time of lossless processor-coders. A processor-coder is any replacement of a
given signal-processor. The processor-coder is lossless when its output is the same as that of the given signal-processor
and lossy when it is not. As an illustration of the use of (5) in guiding the design of either lossless or lossy processor-
coders consider a 1-bit full-adder [8] signal-processor that has a slow bor multi-level implementation structure where the
sum output is associated with six bor levels and the carry-out with five bor levels. This signal-processor is thus
characterized by a minimax processor rate Rp=6 bors which is the maximum of the six bor levels for the sum, and the
five bor levels for the carry-out. The reason for this relatively large number of bor levels is that this full-adder was
originally designed under the implementation processor constraints Cp(sum) and Cp(carry-out) that specify that in the
generation of the sum and carry-out only two-input gates can be used. Nevertheless, this same signal-processor is noted
to have a processor-ectropy of 3 bors when the processor constraints are relaxed to allow for gates with more than two
inputs. More specifically, from the sum of minterms Boolean expressions for the sum and carry-out of the 1-bit full-
adder [8] it follows that the processor-latencies are given for the sum output by Lp(sum)=3 bors and for the carry-out by
Lp(carry-out)=2 bors. The maximum of these two numbers is then the processor-ectropy K=3 bors. Moreover, while the
1-bit full adder is a lossless processor-coder, a lossy but faster, by one bor level, 1-bit full adder can be readily derived
from the lossless case by only implementing the two bor levels for the carry-out and by setting the sum output to zero.
Thus this lossy processor-coder has a rate Rpc of two bors which is less than the processor-ectropy of 3 bors, i.e., Rpc =2
bors < K=3 bors.
The dimensionless sensor-consciousness F is the second performance bound. It is the maximum percentage of the
minimax processor-latency that can be extracted without loss by a window-limited intel-time sensor and is defined by
0<F=(K,-K,)K, = max [(K,- K, )/K,]<] (6)
where e is the input and { is the output of the sensor corresponding to the n-dimensional vectors e and fwith processor-
constraints {Cp[e;]} that maximize the mutual processor latency (K,-K,,;)K, (e.g., for the full adder case the

processor constraints {Cp[e;]} that maximize the mutual processor latency is when the sum output and carry-out can be
derived using logic gates with an arbitrary number of inputs). In particular, K. is a sensor-induced intel-time penalty
whose value determines the percentage of the intel-time specified by K. that can be space-observed without loss. In
quadrant IV of the LIT revolution of Fig. 2 the SPI-coder is displayed whose design is guided by F. While the SPI-
coder’s processor-coder efficiently compresses intel-time, its sensor-coder efficiently uses overhead intel-time for the
space-observation of intel-time across a window-limited intel-time sensor. As an illustration of how (6) can be used
consider a 1-bit full-adder based recursive adder of two bytes. This recursive adder has a processor-ectropy of 16 bors,
i.e., K.=16 bors, since the processor-latency of the 1-bit full-adder carry-out is of 2 bors and 8 bit pairs (plus the carry-in
for each pair) are being added. Then if one observes the adder output with a 14-bors window-limited intel-time sensor,
the sensor-induced inter-time penalty will be of 2 bor, i.e. K =2 bors. In turn, this results in a sensor-consciousness
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value of F=(16-2)/16=0.88 that informs us that only 88% of the 16 bors intel-time of K. can be space-observed without
loss. Thus the adder intel-time latency must be of at least 18 bors. The additional 2 bors that are required to observe the
full sum can then be facilitated by a sensor-coder that uses prior-knowledge, e.g. that LSBs can be zero, which allows
the addition to start 2 bors earlier in time.

C. The Two Performance Bounds of “The Physical Theory of Communication” of LIT’s Quadrant I
The mover-ectropy A4 in SI sec units is the first performance bound. It is the minimax mover-latency given by

A=max[L, (7,),.., Ly (7,)]=max[ f,[C\, (¥)],-., [,IC\, (¥ )]] (7

where: 1) y=[7,..7,] is the n-dimensional signal-mover vector output; 2) L,() is the y mover-latency; and 3) the
function f]Cy(%)]=Ls(y;) conveys the dependence of L,(y) on the y mover-constraint Cy(y). Similarly to the
processor-ectropy K (5) the mover-ectropy 4 (7) is a minimax criterion that advances a lower performance bound for the
life-time of lossless mover-coders. A mover-coder is any replacement of a given signal-mover. The mover-coder is
lossless when it moves all the given signal-mover physical signals and lossy when it does not. Examples of mover-
coders are four-wheeled vehicles whose goal is the negligible decrease of the /ingering (or remaining life-time) of
people when space-dislocating them by some desired Axp,., and photons that carry electromagnetic radiation at the speed
of light in a vacuum for some desired space dislocation Axp,. An example of a lossy mover-coder is an automobile that
can only move six people, but yet replaces a van that carries ten people, thus the four people left behind represent a
physical signal loss.

The mover-ectropy is next derived for a sphere that acts as a signal computational medium in a multi-path
environment (in the next subsection the mover-ectropy of this sphere will be related to its retainer-entropy N when it
also acts as a signal storage medium). First it is noted that the minimax property of the mover-ectropy is inherent when
several movers using different computational paths simultaneously depart from the same location in space to another
location in space some distance away. The paths that these movers can follow are part of a set of motion constraints, e.g.,
all the computational paths that can be taken along the surface of a sphere or within. For the considered spherical case
the movers will be assumed to move at a constant speed v along all the computational paths available. 4 will then be
given by

A=nr/y ®)
where r is the radius of the sphere. To derive this result it is first noted that 7r/v is the minimum life-time for motions
that are restricted to the surface of the sphere. On the other hand, 2r/v is the minimum life-time for motions that are not
restricted as to which path may be taken. Notice that this minimum life-time path is along the diameter of the sphere
whose distance is 2r. The largest of these two life-times, i.e. n7/v, is then the minimax mover-ectropy A of the spherical
computational medium (8).

The dimensionless channel-stay 7 is the second performance bound. It is the maximum percentage of the expected
mover-latency that can be extracted without loss from a multi-path life-time channel and is defined by

0T =(A, - A,,)/A, = max [(4, - A,,)/4,]<1 ©)

(Cyle
where g is the input and @ is the output of the channel corresponding to the n-dimensional vectors £ and ¢ with mover-

constraints {Cy[e;]} that maximize the mutual mover latency (A4, - 4, $)A, - In particular, Ay, is a channel-induced life-

time penalty whose value determines the percentage of the life-time specified by A, that can be space-communicated
without loss. In quadrant I of the LIT revolution of Fig. 2 the CMI-coder is displayed whose design is guided by 7. The ¢
also shown in quadrant I reminds us of the Einstein conjecture of the ‘speed of light in a vacuum’ upper limit that
movers can never exceed. While the CMI-coder’s mover-coder efficiently compresses life-time, its channel-coder
efficiently uses overhead life-time for the space-communication of life-time through a multi-path life-time channel. For
instance, if for our spherical computational medium example 1.2 msec is derived for its minimum surface path and 1
msec for its direct diameter path, then 4, will be equal to 1.2 msec. Thus if the movement along each motion path is
slowed down by a life-time channel that increases each mover life-time by at most 0.2 msec, it then follows that 4,
will be of 0.2 msec. In turn, this results in 7=(1.2-0.2)/1.2=0.834 which informs us that only 83.3% of the 1.2 msec life-
time in A, can be space-communicated without loss. Thus the life-time of the longest life-time mover can never be less
than 1.4 msecs. It is then the task of the life-time channel coder to provide the mover paths that satisfy the 1.4 msecs
limit.
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D. The Two Performance Bounds of “The Physical Theory of Observation” of LIT’s Quadrant III
The retainer-entropy N in SI m” units is the first performance bound. It is the expected retainer-information given by

N =B ()= 1(e)P(s,) = 4 (10)
I(&)=4m7(Pr()) (11)

r =Y P BERE) (12)

where:1) ¥ € {g. &} is a n-dimensional random vector composed of Q vector outcomes (or microstates) {& _&a}; 2)
Ix(g) is the g retainer-information in SI m?, which specifies the minimum surface area (corresponding to the surface area
of a sphere of radius r(.) and volume V) life-space of & with volume V;; 3) Px(s) is the & retainer-probability; and 4) r is
the radius of the sphere given by the square root of the expected radius square of the minimum surface area spheres
linked to {&_&n}. Similarly to the source-entropy H (1) the retainer-entropy /N (10) is an expectation criterion that
advances a lower performance bound for the life-space of lossless retainer-coders. A retainer-coder is any replacement
of a given signal-retainer. The retainer-coder is lossless when it retains all the given signal-retainer physical signals and
lossy when it does not. Examples of retainer-coders are a thermos whose goal is the negligible decrease of the
temperature of hot tea when time-dislocating it by some desired A7y, and an atom that maintains the direction of its spin
for some desired time-dislocation Azg,. An example of a lossy retainer-coder is a thermos that can only store three hot
tea servings, but yet replaces a thermos that stores five hot tea servings, thus the two hot tea servings left behind
represent a physical signal loss. An example of a lossless retainer-coder that achieves the retainer-entropy N=4m/” is a
spherical thermos of hot tea whose volume is the same as that of the given cylindrical thermos that it replaces.

The dimensionless sensor-scope ‘I’ is the second performance bound. It is the maximum percentage of the expected
retainer-information that can be extracted without loss from a noisy life-space sensor and is defined by

0<T=(N.-Ng,)/N: = max [(N,-N,, )IN,]<1 (13)
- T - {RBD = = =

where Z is the input and @ is the output of the sensor corresponding to the n-dimensional microstates fand o with a

retainer-probability distribution {Px[/]} that maximizes the mutual retainer information ( N,-N,)IN,- In particular,

Ngjp 18 a sensor-induced life-space penalty whose value determines the percentage of the life-space specified by Nz that
can be time-observed without loss. In quadrant III of the LIT revolution of Fig. 2 the SRI-coder is displayed whose
design is guided by ‘I’. The g also shown in quadrant III reminds us about the conjecture of 2008 by the author [9] of the
‘pace of dark in an uncharged and non-rotating black hole (UNBH)’ upper limit that retainers can never exceed. The
derived expression and value for the pace of dark is

2 =1V=960nc¢*/hG = 6.1123 x 10% secs/m’ (14)
where 7 is the lifespan of a UNBH with an initial volume of ¥, and 4 and G are the Plank and gravitational constants,
respectively. While the SRI-coder’s retainer-coder efficiently compresses life-space, its sensor-coder efficiently uses
overhead life-space for the time-observation of life-space across a noisy life-space sensor. As an illustration, if a
cylindrical thermos for hot tea with a surface area of 1687 cm” has a retainer-entropy of Nz=144r cm?, this retainer-
entropy can be implemented with a spherical thermos with a 6 cm radius that has the same volume as the given
cylindrical thermos. However, if the hot tea is time-observed with a noisy life-space sensor consisting of random people
that require the drinking of the hot tea from a thermos cup with a 166 cm” surface space, the sensor-induced life-space
penalty will be of 227 cm?, i.e. Nzjo=227 em®. In turn, this results in I=(144-22)/144=0.847 informing us that only
84.7% of the 144 7z cm* life-space of Nz can be time-observed without loss. Thus the hot tea life-space must be of at least
1667 cm®. Tt is then the task of the life-space sensor coder to provide a thermos cup that satisfies the 166z cm? limit.

3. The Statistical Physics Bridges of the LIT Revolution

In this section it is revealed that statistical physics, of which thermodynamics is a special case, offers a natural bridge
for the entropies and ectropies of the LIT revolution. The discussion begins with the thermodynamic-entropy for a black
hole [4]-[5] that advances a natural ‘linear bridge’ between the source-entropy and retainer-entropy of the IS-uncertainty
quadrants II and III of LIT. Then for an ideal gas a ‘nonlinear logarithmic bridge’ between these two entropies is found.
Following with this investigation it is then discovered that a similar type of bridge exists between the mover-ectropy of
quadrant I and the retainer-entropy of quadrant III, which in turn leads to the realization that thermodynamics has a LT-
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certainty dual which has been called lingerdynamics [13]. As expected from this LT-certainty/IS-uncertainty duality
perspective a natural bridge between the mover-ectropy of quadrant I and the processor-ectropy of quadrant IV is then
revealed for both the UNBH and an ideal gas. The section then ends with a summary of the lingerdynamics terms that
are the LT-certainty duals of thermodynamic terms as well as the relations that bridge them.

A. The Black Hole Thermodynamics Entropy
It is well known [4] that a linear relationship exists between the Boltzmann thermodynamics-entropy S and the
Shannon source-entropy H that is given by
S =1n2kH (15)
where both .§ and the Boltzmann constant & are in SI joules per kelvin (J/K) units and H is in bit units. Moreover, it is
found that when the microstates of the retained mass or energy are equally likely, H attains the maximum value of
H=log,) bits and § attains the maximum value of S=kInQ) as expected. For the special case of a UNBH the
thermodynamic-entropy has been studied by Hawking and others [4]-[5], [9]. The principal result of this investigation
that has a direct impact on the revelation of a statistical physics bridge for LIT is summarized by the relationship
Spy /IN2k = A2In2hG = g cAN920I02 = H = ¢ Ny = Ny /N gy = 0y /gy = (M /M, V' (16)
where:

1) A is the surface area of the spherical UNBH and c, %, G and y are the four Universe constants (14) [9].

2) The subscript EH that appears in (16) for different variables signify the ‘event horizon” where a black-hole
meets a vacuum. Hawking conjectured in the mid 1970’s that on this event horizon [5] photon pairs are spontaneously
created, with one photon in each pair emerging inside the vacuum (the so-called Hawking radiation) and the other
emerging inside the black-hole. While the photon inside the vacuum increases the positive energy of the vacuum, the
photon inside the black-hole decreases the positive energy of the black-hole. Thus the Hawking conjecture predicts a
finite life-time for any black hole in the absence of any external mass or energy entering it. If the initial volume Vg of

the UNBH is known (or equivalently its initial mass Mgy since Vgy=4mr'/3=4n(2GMgy/c?)’/3 where ¥ =2GM ., / ctis
the Schwarzschild radius [4]-[5]), the lifespan 7z of the UNBH can be easily derived by multiplying the pace of dark
Zby VEH, i.e.,

TEH™ VEHI (17)

3) Sen, Hiy and Ngy are the thermodynamics-entropy, source-entropy and retainer-entropy of the UNBH,
respectively, with

Ny = A=47" =47(2GM ,, I ) (18)

where the speed of light ¢ appearing in (18) may be interpreted as the escape speed of the Hawking radiation from the

event horizon of the UNBH.
4) Npg; is the bit retainer-entropy derived from the expressions

Ny =1/¢y,, =2020G | 70* =4y, = 4w (2GM y, | ¢*)’ (19)
my, =NmIn2 L,=14757L, (20)

L, =vhG/2 nc’ (#3))

My, =2I02M , =1.1774M (22)

M, =hc/167°G (23)

where 7rp;, (denoting Y2 of the circumference of the retainer-entropy sphere of radius rg;) is larger than the Plank length
Lp (21) as noted from (20) and expected by theory [4]. Moreover, it is assumed that a bit has a mass Mp;, (22) (or energy
for photons) whose escape speed approaches ¢ (or is ¢ for photons) exceeding the reduced Plank mass Mgp (23). Finally

¢Sm is the bit retention (or storage) surface fix in SI 77 units of the UNBH where surface fix is the retention dual of

frequency. In Table 1 selected retention/motion dualities are stated inclusive of the aforementioned surface-fix/frequency
duality.

5) Iz, is the time span (or weavelength which is the retention dual of wavelength) of escape of the bit mass Mp;,

from the UNBH mass My via Hawking radiation, and is related to the UNBH radius r and the speed of light ¢ as follows

Ly =N xr/3=640In27r/c- (24)
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B. The Ideal Gas Thermodynamics Entropy

From (16) it is noted that statistical physics advances an inherent link between the source-entropy Hgy of LIT’s
quadrant II and the retainer-entropy Ngy of LIT’s quadrant III. However, the simple linear relation Hgy=Ngy/Np;; is
unique to the UNBH medium and thus must be found for other mediums. For instance, for an ideal gas (IG) [10]-[11] the
following nonlinear bridge between its retainer-entropy /V; and its source-entropy Hjg is derived in Appendix A

81/ In2k = H,g = J(In(V,iT% 1 JB)+ ¢, )/In2 = J10g,(N g /AN = 1y /11 = (M1 | AM . })  (25)

N =Wyo/r=4m" = 47(2GM 1 172} (26)
AN,o =1/, =4 =4r(2GAM i /2 | 27)
b =alemy kT /W) (r/M,;)/3 (28)
o=g o312 =312 (29)

m=M,, |J=3kT /v, (30)

rIM,, =2G/v} €2)

7,6 =Vl (32)

L, =AN,Ir/3 (33)

where: 1) J is the number of gas molecules (assumed in this illustrative case to be of one species but easily extended to
multi-species via the Gibbs theorem [10]); 2) Vi, T and M,; are the volume, temperature and mass of the gas in SI m,
K, and kg units, respectively; 3) ¢y and cp=cy+1 are the dimensionless heat capacity constants under constant volume and
pressure conditions, respectively, with ¢;=3/2 and cp=5/2 for a monatomic gas (the value of ¢, can be found either
experimentally or theoretically, from the degrees of freedom dy of the molecules where c¢;=d/2); 4) h is the Plank
constant; 5) r is the radius of a sphere of volume Vjs; 6) v, is the escape speed in SI m/sec units of the gas molecules
from the gravitational field of the gas mass M that is assumed to be a point mass at the center of a sphere of radius r; 7)

Vs 18 the root mean square speed of the gas molecules; 8) B=T 'S g is an undetermined gas constant where
X =h/~2mmkT is the thermal de Broglie wavelength, g=1 for a monatomic gas, and m is the mass of a single molecule;
9) ¢Szc in weavelength (the retention dual of wavelength defined in Table 1 [9]) cycles/m* units is the retention (or

storage) surface fix (the retention dual of frequency [9] defined in Table 1) of the gas; 10) o is a dimensionless constant
that has a value of one for a monatomic gas since ¢;=3/2 and g=1 for this case; 11) Vg is the retainer-entropy associated
with M;g; 12) ANy is a small fraction of the retainer-entropy Nyq that is associated with the fractional mass AM;q <<M;
whose molecules’ escape speed is v,; 13) /7is the pace of retention in SI sec/m® units of the ideal gas in the volume Vig;
14) 7 is the lifespan of the ideal gas; and 15) /j; is the cyclic time span (or weavelength) of escape from the ideal gas
mass Mjq of the fractional mass AMg.

From (16) and (25) the general relationship between the retainer-entropy N and the source-entropy H is noted to be
nonlinear, thus in general

S/n2k=8,=H=f(N) (34)

where, in particular, f{.) is a linear function of N for black holes (16) and is a nonlinear function of N for ideal gases
(25), and the dimensionless thermodynamic-entropy expression S/In2k has been assigned the symbol S}

C. The Revelation of Lingerdynamics

When the spherical storage medium associated with the retainer-entropy N=4m/* (10) has the dual role of serving as
a spherical computational medium, it is then noted that its mover-ectropy A=nr/v (8) is inherently linked to its retainer-
entropy via the sphere’s radius . Thus the following bridge relationship is revealed

YEN (35)

v,Sv<c (36)
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where the speed v is assumed greater than or equal to the escape speed v, of AMj; from the retained mass Mg and less
than or equal to the speed of light c. Moreover, while for an UNBH v,=c since the escape speed from a black hole is that

of Hawking radiation, for an ideal gas
v, =,2GM . /r (37

since the escape speed v, of AMj¢ from the gravitation field of the point-mass Mj¢ is given by (37).

The bridge between the LT-certainty mover-ectropy 4 and the IS-uncertainty retainer-entropy N for a spherical
medium expressed by (35) inherently leads to the revelation of a LT-certainty dual for the IS-uncertainty
thermodynamics bridge from NV to H (34). This LT-certainty duality expression is given by

Z=K=g(A) (38)
where: 1) g(.) is some function of A4 that links the mover-ectropy A to the processor-ectropy K; and 2) Z is the
dimensionless lingerdynamics-ectropy dual of the dimensionless thermodynamics entropy S; defined in (34). It should
be noted from the equality Z=K in (38) that although the lingerdynamics-ectropy Z is ‘physically’ dimensionless, it still
has the same minimax computational mathematical bor units of K. Also note from S;=H in (34) that although the
dimensionless thermodynamics-entropy expression Sy is ‘physically’ dimensionless it still has the same expected storage
mathematical bit units of H. Furthermore, while the IS-uncertainty bridge (34) is part of thermodynamics, the LT-
certainty bridge expression (38) is part of lingerdynamics which is the designated name for the LT-certainty dual of the
[S-uncertainty thermodynamics. Notice that while the word thermo in thermodynamics relates to the IS-uncertainty
properties of matter, the word /inger in lingerdynamics relates to the LT-certainty properties of matter. Thus in essence
statistical physics has been discovered to exhibit a LT-certainty/IS-uncertainty duality perspective which was first
revealed in an October 2009 PSC-CUNY 41-951 research award proposal [13].

The bridge between A and K for the UNBH and the ideal gas are easily derived. For the UNBH it is given by the
expressions

Ly =Ky = AEH/ABur = NEHﬂVBit (39)
Ay =~|7N gy 1467 (40)
Ag, =1/ fry :V”NBit/4cz 41)

where Zgy, Kgy and Agy are the lingerdynamics-ectropy, processor-ectropy and mover-ectropy of the UNBH, and A,
is the mover-ectropy of the spherical medium associated with the bit retainer-entropy Npg; while fgg is the bor motion (or
computational) frequency of the UNBH. Furthermore, using (19) in (41) Ap,, can be expressed as

Ag,. =71y, /c=rIn2 T, =1.4757T, (42)
T,=L,/c (43)

which is noted to be larger than the Plank time 7T as suggested by theory. Equations (16) and (39) can then be combined
to yield the following bridge relationship between all four quadrants of LIT for an UNBH

Sk,EH = HEH = NEH/NBir = (AEH/ABor )2 = KZ‘H = Z;H : (44)
Ay =T Ny 1467 (45)

ABorzl/fEH:VﬂNBit/4cz (46)

For an ideal gas a universal statistical physics bridge can be derived using a similar methodology as that used to find
the one for a UNBH (44). More specifically, one departs from (25) while assuming that the relationship between 4 and
N for LIT’s physical-life quadrants I and III is given by (35) and (36), i.e.,

A=z N/&?*, (47)

and the relationship between H and K for LIT’s mathematical-intelligence quadrants II and IV is similar to that for the
UNBH (44), i.e.,

K=+H. (48)
When (47) and (48) are used in conjunction with (25) the desired statistical physics bridge results
2
Sk,IG =H,;=Jlog, (NIG/ANIG = (AIG/AAIG) ): KIZG = ZIZG (49)

Ay =7 N, /4v? (50)
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Adyg =1/ fig =7 AN i | 407 (51
v,=42GM /r <v<c (52)

where Zjg, Kjg and A are the lingerdynamics-ectropy, processor-ectropy and mover-ectropy of an ideal gas, and Ad;q
is the mover-ectropy of the motion (or computational) sphere associated with the retainer-entropy AN, while fj¢ is the
motion (or computational) frequency of the ideal gas.

D. Statistical Physics with Retention Variables

The defining expressions for the UNBH and the ideal gas bridge expressions (44) and (49) can also be expressed in
terms of the physical retention duals of motion variables first advanced in [9] as well as the lingerdynamics dual for
temperature whose assigned name is lingerature. When this is done the following expressions result:

Sen = Newk 1ALy = Ngy keg/1920 (53)
Ngi=1/¢5, =4 1n2 Lp*=1920 In2/cy -7.2628 x 107 m? (54)
L,=+/480/cy (55)

AN,o =1/¢ =47(2GAM 4 1v2 ) = 47(3/ 4m¢ )" (6080, / 1] (56)
r=4nry /3 (57)

a=9d0, /1" =GM , y/4rr'c’ = ay/4m’c’ (58)

@ =3/47y"/81c? G=1.8538 x 10'* Pa.sec*/kgy’ (59)
AOg =AMy (60)

600, /7" =\2GM;/r y/c=v,g/c (61)

b, = cr(eo,(/c2 )5/2 (277 Ly!h? )3/23#35’ /4y’ (1”3 /Oy )/3 (62)
o=mc’ |y (63)

L=kTy (64)

I, =~N3L/o=~3kT /mylc=v, x/c (65)
where: 1) Egs. (60), (61), (63), (64) and (65) are statistical bridges from AMg, v,, m, T and v,,,, to the mater AOy in SI
kgr=kg.m’/sec® (AOy; is the retention dual of mass AM,g), escape pace /7, in SI sec/m’, the molecular mater o in SI

kgr=kg.m’/sec’, lingerature L in SI Pa.sec, and rms pace /T, in SI sec/m*; 2) Eq. (57) is the bridge from the radius  of
a motion-space vacuum sphere that at its motion-space center contains the space-point mass Mg, to the retention 7 of a
retention-time UNBH sphere that at its retention-time center contains the time-point mater Oy [9]; 3) « is the escalation
of mater in SI sec/m® (« is the retention dual of the mass acceleration ‘a’); 4) Eq. (58) is the bridge from the acceleration
a of a mass at some point in motion-space p; that is due to the gravitational-field in a vacuum of a space-point mass Mg
space-dislocated from p; by r, to the escalation « of a mater at some point in retention-time p, that is due to the
gravidness-fallow in a UNBH (the retention dual of the gravitational-field in a vacuum) of a time-point mater O;; time-
dislocated from p, by 7; 5) @is the gravidness constant; 6) Eq. (59) is the bridge from G to @; 7) Egs. (56) and (62) are
retention duals for (27) and (28); and 8) Egs. (53)-(55) express Sex, Npi and Lp in terms of cy. It is of interest to note
that while the value of Ng; given in (54) sets a lower limit for the retainer-entropy of any medium, the retention (or
storage) surface fix ¢SEH of the UNBH bits sets an upper limit for the surface fix of any medium with its value given by

=cz/1920 In2 =1.3769 x 10% cycles,/m’ (65a)
SEH

E. A Brief Summary of the Lingerdynamics and the Thermodynamics Terms

As expected lingerdynamics has LT-certainty dual terms for all the known IS-uncertainty thermodynamics terms. In
this section many of these terms will be discussed with the aid of three tables. First, with the aid of Table 1 the physics
LT-certainty motion and IS-uncertainty retention terms, dualities and bridges will be discussed. Second, with the aid of
Table 2 the statistical physics LT-certainty lingerdynamics and IS-uncertainty thermodynamics terms, dualities and
bridges will be treated. Third and last, the previously derived bridges for the UNBH and ideal gas cases plus additional
related concepts and extensions are summarized and further discussed with the aid of Table 3 and Appendix B.
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Table 1. Selected Physics Motion/Retention Terms, Dualities and Bridges.
LT-Certainty Motion Terms Bridge IS-Uncertainty Retention Terms
Vacuum Black-Hole
Motion-Time ¢ in SI sec Retention-Space &in SI m’
Motion-Space r(f) in SI m Retention-Time 7 (&) in Sl sec
Space-Dislocation Ar in SI m Time- Dislocation Azin SI sec
Life-Time At in SI sec Life-Space A& in SI m’
¢ =2.9979 x 10° m/sec 7 =960nc’/hG 7=6.1123 x 10 sec/m’
G =6.67300 x 10" m’ /kg sec’ h=960nc*/G y h=6.626068 x 107" m” kg /sec
Mass M in SI kg O=Mc*/ y Mater O in SI kgg=kg m’/sec’
Mass-Energy E=Mc” in SI.J aFE y Mater-Viscidity @= O * in SI Pa.sec
Speed v =Ar/At in SI m/sec f=vylc Pace /T=Aw/AE in Sl sec/m’
Momentum p=Myv in SI kg.m/sec v=pc Endurance v=0/7in SI Joule
Average Force /~Ap/At in SIN y="Ffvy="Ffell Average Press y=Au/A¢ in SI Pa
Work W=FArin SI.J Y=Wy Effort ¥=yAr in SI Pa.sec
Wave Weave
Wavelength 4 in SIm Weavelength / in SI sec
Frequency fin SI 4 cycles/sec Surface Fix g in / cycles; / m”
Wave Speed v=Af Weave Surface Pace /7= /¢
Spectrum Spread
(The Frequency-Wavelength Domain) (The Fix-Weavelength Domain)
Bandwidth Bevywidth
(Spectrum of Relevant Frequencies) (Spread of Relevant Fixes)

First in Table 1 selected physics LT-motion/IS-retention terms, dualities and bridges are summarized. They are:

A black-hole is the retention dual of a vacuum. While a vacuum exhibits the least resistance to the motion of
matter, a black-hole exhibits the least resistance to the retention of matter.

The retention-space variable &in SI m’ is the retention dual of the motion-time variable ¢ in SI sec. While in
motion problems physical variables are often investigated assuming an ideal motion environment, i.e., a
vacuum, as ¢ varies independently of them, in retention problems physical variables are often investigated
assuming an ideal retention environment, i.e., a black-hole, as & varies independently of them.

The retention-time variable 7 (&) in Sl sec is the retention dual of the motion-space variable #(¢) in SI m. While
r is a function of the motion-time ¢, 7 is a function of the retention-space &.

The retention time-dislocation At in Sl sec is the retention dual of the motion space-dislocation Ar in SI m.
While Ar is the distance between two points in motion-space, Az in the distance between two points in
retention-time.

The retention life-space A& in SI m’ is the retention dual of the motion life-time Az in SI sec. While At is the
motion life-time used to achieve some desired space-dislocation Ar, A& is the retention life-space used to
achieve some desired time-dislocation Az.

The retention pace of dark in a black hole y is the retention dual of the motion speed of light in a vacuum c.
There is a bridge equation from ¢ to y mediated by the Plank and gravitational constants # and G, i.e.
2=960nc*/hG. While in a vacuum mass-less energy movers such as photons achieve the speed of light upper
limit ¢, in a black-hole mater-less viscidity retainers (viscidity in SI Pa.sec is the retention dual of energy in SI
J) such as portages (the retention dual of photons) achieve the pace of dark upper limit y.

The retention Plank constant / in SI m*kg/sec is the retention dual of the motion gravitational constant G in SI
m’/kg sec’. There is a bridge equation from G to » mediated by ¢ and g, it is ~=960mnc*/G .
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e The retention mater O in SI kgg=kgm’/sec’ is the retention dual of the motion mass M in SI kg. There is a bridge
equation from M to O mediated by ¢ and g, it is O=Mc*/y.

e The retention mater-viscidity (or O-@) equation @= O g? is the retention dual of the motion mass-energy (or
M-E) equation E=Mc”. The retention viscidity @ in SI Pa.sec is the retention dual of motion energy E in SI J.
There is a bridge from E to @mediated by y, itis @=F .

e The retention pace IT=At/A& in SI sec/m’ is the retention dual of the motion speed v =Ar/At in SI m/sec. While
the motion speed v is the ratio of the space-dislocation achieved, Ar, per life-time used, Az, the pace /7 is the
ratio of the time-dislocation achieved, Az, per life-space used, A& There is a bridge equation from v to
ITmediated by the pace of dark y and speed of light ¢, it is //~v y /c. While the maximum achievable speed is
that of pure energy such as mass-less photons in a vacuum moving at the speed of light ¢, the maximum
achievable pace is that of pure viscidity such as mater-less portages in a UNBH retaining at the pace of dark z.

e The retention endurance expression v=0/7 is the retention dual of the motion momentum expression p=My.
The retention endurance v in SI J is the retention dual of motion momentum p in SI kg.m/sec. There is a bridge
equation from p to v mediated by c, it is v =pc.

e The retention average press y=Au/A¢& is the retention dual of the motion average force ~Ap/At. The retention
press yin Sl Pa is the retention dual of motion force fin SI N. There is a bridge equation from #to yeither
mediated by c and /77, itis y=fcll, or by vand g, itis y=fv x.

e The retention effort expression ¥=pAr is the retention dual of the motion work expression W=¢ Ar. The
retention effort ¥ in SI Pa.sec is the retention dual of motion work W in SI J. There is a bridge equation from
Wto ¥mediated by g, itis Y=W y.

e The retention weave is the retention dual of the motion wave.

e The retention weavelength / in SI sec is the retention dual of the motion wavelength A in SI m.

e The retention fix ¢in weavelength cycles, per SI cubic meter (or cycles; /m’) is the ‘volume’ retention dual of
the motion frequency fin SI A cycles/sec. ¢ in cycles,/m” is the ‘surface’ retention version of ¢.

e The retention weave pace expression //=/¢ is the ‘volume’ retention dual of the motion wave speed expression
v=Af. IT=lgs in SI sec/m” is the ‘surface’ version of /7=/¢.

e The retention spread is the retention dual of the motion spectrum. While the spectrum describes the motion
characteristics of matter from a frequency-wavelength domain perspective, the spread describes the retention
characteristics of matter from a fix-weavelength domain perspective.

e The retention bevywidth is the retention dual of the motion bandwidth. While bandwidth describes the spectrum
of relevant frequencies-wavelengths of matter in motion, bevywidth describes the spread of relevant fixes-
weavelengths of matter in retention.

Next in Table 2 selected statistical physics terms, dualities and bridges of LT-certainty lingerdynamics and IS-
uncertainty thermodynamics are stated. They are:

e The dimensionless lingerdynamics-ectropy Z is the LT-certainty dual of the dimensionless thermodynamics-
entropy 8/In2k=S;. While S;=H is characterized by ‘mathematical’ bit units, Z=K is characterized by

‘mathematical’ bor units. There is a bridge equation from Sy to Z, itis Z = /S, -

e The viscidity lingerature L in SI Pa.sec is the LT-certainty dual of the energy temperature 7' = k7 in SI.J where
T is the standard definition of temperature in SI K. There is a bridge equation from 7' to L, itis [ =7.

e The hover A in SI Pa.sec is the LT-certainty dual of the heat O in SI J. While the heat O spontaneously
transfers from a high7', i.e. T pig, to @ low 7', i.e. T 1oy, the hover A spontaneously transfers from a highZ , i.e.
L wigh, to a low L, i.e. L1,y There is a bridge equation from Q to A, it is A=0y.

¢ The dimensionless hover capacity under constant duration c, and constant press c, are the LT-certainty duals of
the dimensionless heat capacity under constant volume ¢ and constant pressure c¢p. There is a bridge equation
from cy to ¢, it is the equality ¢~ cy. There is also a bridge equation from cp to ¢,, it is the equality ¢,= cp.

e The internal viscidity @ = c.J , L in SI Pa.sec is the LT-certainty dual of the internal energy {/ = CVJ[I 7 in

SIJ of a gas. J, is the number of particles in the gas. There is a bridge equation from U'to @, itis @=Uy.
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Table 2. Selected Statistical Physics Terms, Dualities and Bridges.

LT-Certainty Lingerdynamics

(About Impossibility of Zero Temperature)
T+0

IS-Uncertainty Thermodynamics Bridge
(About Work and Heat Transfer) (About Effort and Hover Transfer)
Dimensionless Thermodynamics-Entropy 7 = \/ka Dimensionless Lingerdynamics-Ectropy
S/n2k=S,=H Z=K
Energy-Temperature 7" = k7 in SI.J L=Ty Viscidity-Lingerature L in SI Pa.sec
Heat Qin SIJ A=Q0x Hover A in SI Pa.sec
Heat Capacity Constants c=cy Hover Capacity Constants
¢y and cp and ¢, ~cp c. and ¢,
Internal Energy U = ¢, J, 7in SIJ e=Uy Internal Viscidity @ = ¢_ J, L in SI Pa.sec
Energy-Temperature as the “S;=H Rate’ Viscidity-Lingerature as the ‘Z°=K" Rate’ of
of Change of Internal Energy Over In2 L=Ty Change of Internal Viscidity Over In2
T =kT =k(0S/0U)" =(0U /8S,)/In2=(0U / 0H )/ 1n2 i =(00/02%)/n2=(00/6K?)/n2
Pressure Times Space-Scope (or Volume) Press Times Time-Stay (or Duration)
Product Energy PV in SI J= Pa.m’ yr=PVy Product Viscidity 7 in SI Pa.sec
The Thermodynamics Gas Law The Lingerdynamics Gas Law
PV =J, T inSIJ yr="Pry ]/T=Jpz,. in SI Pa.sec
Enthalpy Heat Ecthalpy Hover
H=U+PV E=Hy E=0+yr
Helmbholtz Work Helmbholtz Effort
A=U~-ST=U-2HT I=Ay '=0-n22L =0-In2K*L
Gibbs Work Gibbs Effort
G=H-ST=H-In2HT Y=Gy Y=5-n2Z’L =5-n2K’L
The 0" Law of Thermodynamics The 0™ Law of Lingerdynamics
(About Thermal Equilibrium Among Bodies) I = TZ (About Linger Equ.i.l.ibrium Among Bodies)
From T = kT Definition From L Definition
The 1* Law of Thermodynamics The 1* Law of Lingerdynamics
(About Conservation of Energy) AO® =AUy (About Conservation of Viscidity)
AU=AQ - AW AO =AA-AYV
The 2™ Law of Thermodynamics The 2™ Law of Lingerdynamics
(About Non-Conservation of Entropy) SZ =88/ 1n2k (About Non-Conservation of Ectropy)
S =00/T=In2k5H >0 In26Z> =54/L =1n26K* >0
The 3 Law of Thermodynamics L=kTy The 3" Law of Lingerdynamics

(About Impossibility of Zero Lingerature)
L#0

PV Diagram and its Cycles

yz Diagram and its Cycles

Spontaneous Heat Engines

Spontaneous Hover Engines

T, High = T, .Low Lngh = Z‘Luw
Non-Spontaneous Work Engines Non-Spontaneous Effort Engines
Ty < T, Ly = L,
Carnot Heat Engine Max. Efficiency Carnot Hover Engine Max. Efficiency
(s =TV (s ~ Ly Vs
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The equation J = (6@/822)/1112 = (8@/8K2)/1n2 defining the viscidity-lingerature I as the ‘Z’=K* rate’ of
change of internal viscidity over In2 is the LT-certainty dual of the equation 7 =T = k(as/au)*‘
=(0U/68,)/n2=(dU /oH )/In2 defining the energy-temperature 7 as the ‘S;=H rate’ of change of internal
energy over In2.

The press times time-stay (or duration) product y7is the LT-certainty dual of the IS-uncertainty pressure times
space-scope (or volume) product PV. There is a bridge equation from PV to yr, it is yz=PVy.

The lingerdynamics gas law yz = J p[ is the LT-certainty dual of the thermodynamics gas law PV = J » T.

There is a bridge from the thermodynamics to lingerdynamics gas law, it is y==PVy.

The ecthalpy hover 5=@+yr in SI Pa.sec is the LT-certainty dual of the enthalpy heat H =U + PV in SI J.
There is a bridge equation from H to 5 itis 5 =Hy.

The Helmholtz effort I'=@-In2Z°L =©—-In2K*L in SI Pa.sec is the LT-certainty dual of the Helmholtz
work A =U—ST =U —In2HT in SIJ. There is a bridge equation from A4 to 7 itis [" = Ay.

The Gibbs effort ¥ =5 —1n2Z°L =5 —In2K>L in SI Pa.sec is the LT-certainty dual of the Gibbs work
G =H-ST=H~-In2HT in SIJ. There is a bridge equation from G to ¥, itis Y =Gy .

The 0™ law of lingerdynamics (about the linger equilibrium among bodies) is the LT-certainty dual of the 0™
law of thermodynamics (about the thermal equilibrium among bodies). While the 0" law of thermodynamics

arises from the energy temperature 7 definition, the 0™ law of lingerdynamics arises from the viscidity
lingerature L definition. There is a bridge from 7'to L, itis L' =Ty

The 1% law of lingerdynamics (about the conservation of viscidity, i.e., A@ = A4-AY¥ ) is the LT-certainty dual
of the 1™ law of thermodynamics (about the conservation of energy, i.e., AU = AQ - AW). There is a bridge
equation from AU to A, it is A@=AU .

The 2™ law of lingerdynamics (about the non-conservation of ectropy, i.e., In282> =34/ L =1n26K> >0) is
the LT-certainty dual of the 2™ law of thermodynamics (about the non-conservation of entropy, i.e.,
08 =60/T =In2 kS6H > 0). There is a bridge equation from dS to 0Z, itis 6Z =~+/8S /In 2k .

The 3™ law of lingerdynamics (about the impossibility of zero lingerature, i.e., I = 0) is the LT-certainty dual
of the 3™ law of thermodynamics (about the impossibility of zero temperature, i.e., 7 % 0). There is a bridge
from Tto L ,itis I = kTy .

The yr diagram and its associated cycles is the LT-certainty dual of the PV diagram and its cycles. While a
clockwise movement on the PV diagram cycle delivers work in the yz diagram delivers effort.

The spontaneous hover engine is the LT-certainty dual of the IS-uncertainty spontaneous heat engine. While an
spontaneous heat engine is linked to a spontaneous heat transfer from a higher energy-temperature T'High to a

lower energy-temperature 7, , an spontaneous hover engine is linked to a spontaneous hover transfer from a

ow

higher viscidity-lingerature 'L'High to a lower viscidity-lingerature 7, .

The non-spontaneous effort engine is the LT-certainty dual of the IS-uncertainty non-spontaneous work engine
(i.e., cooling and heating systems). While a non-spontaneous work engine results in a non-spontaneous heat
transfer from a lower energy-temperature TLHW to a higher energy-temperature T;ﬁgh , a non-spontaneous hover

engine results in a non-spontaneous hover transfer from a lower viscidity-lingerature [, to a higher viscidity-
lingerature [, igh

The Carnot hover engine maximum efficiency (L, — L, /Ly, is the LT-certainty dual of the IS-uncertainty

igh

Carnot heat engine maximum efficiency (7}, , —7;, )/}, -
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Next Table 3 summarizes the UNBH and ideal gas statistical physics bridges between their IS-entropy and LT-

ectropy terms. In Appendix B each of the entries in this table are discussed.

Table 3. Summary of the UNBH and Ideal Gas Statistical Physics Bridges.

IS-Uncertainty Entropy Terms

Bridge

LT-Certainty Ectropy Terms

UNBH Entropy Bridges
Sk,EH =H, = ¢SE,, Ny =Ngy/Ng,

Ly = V Sk,EH

UNBH Ectropy Bridges
Zpy =Ky = fEH Apy = Apy/Ag,,

Ny =4m7 =47(2GM,,,, /|

Apy =m/c=2GM 7/’

Ny =1/, =4mn* =47(2GM,, /1 f Apy =N, 146 Ay =/ foy =2/ ¢ =2GM 70/ &
Ny /Ny = (M gy /My, ) =7 /(PN i 20 /3) =71 Ly, Ay /Ay, =Ny /N, Aps/ A = Mg/ My, = 10 Agy, = 70 2y =T KN g0 13) =T 1y
Ly =rNyg.x/3 Ay =37 Ly 1 417 Apy = €Ay,
bs,, =1/ Ny, =cx /1920In2 fon =44, /7 Son =1/ Ay, =[x/ 4807 1n2

Iy =¢g ly=rx/3

Ve = SCZHS}H [ yr

Vi = Jenden =€

My, /My =\l /T

My, My =g, /77

Single Species Ideal Gas Entropy Bridge
Si6=Hg= Jlog2(¢sm Ny = NIG/ANIG)

Single Species Ideal Gas Ectropy Bridge
ZIZG = KIZG =Jlog, (fIGAIG =A;/MMyg )2

Nyo =4 =4z(26M; 1V}

Ay =m/v=2GM,,z/vv

AN =1/, =4 =4z{2GAM , 1} |

Ay, =1/ fi; = 7Ar [ v=2GAM .7t/ v}V

Nyo/AN o =(M,e/AM Y =7 /(rAN o 11/3) =7/

A/M,g = VA = /2 = M /AM 1 =T I(rAN 16 IT/3) =\ /1,

Ly =rAN, I1/3

g =vMg

¢, =1/ AN, =rT* e g(2zmkT)"* /3JT* 1’

fio=1/Ad,; = \/4v2’,TL,eu,,g(zﬂka)s/z 13T 21

Iy =¢g lig=rI1/3

Vic = fighig =V

AM,; /M, =l /7

! mr=qll;c/7

AM, . IM;=A¢/7r

Gibbs Theorem for Thermodynamics-
Entropy of Ideal Gas With Q Different
Types of Molecule Species

Si6 =2 iy =k 2 J,n(V,;T e 1 J,B)

4]
B:zi:]Tme/gi, X, :h/m

Z,; =S,/ In2k

Gibbs Theorem for Lingerdynamics-
Ectropy of Ideal Gas With Q Different
Types of Molecule Species

Zyg = \/Zil ZIZGJ = \/Z,Qzl J;log, (VIGTCVeCP /J‘.B)

B:ziQ:IT3/2X1‘3 /gi7 Xi =h/\/m

The Gibbs Theorem Entropy Bridge

The Gibbs Theorem Ectropy Bridge

sk,IG = HIG = il HlG,i = zil ‘]l 10g2 (¢S,G,LNIG) Z[(; = Sk,m Z;=K;c= \/Zil KIZG,:‘ = \/Zin J;log, (flc.,AIc)2
= ZIQZI J;log, (NlG/ANlGr") =1 Zi,‘], log, (AIG/AAIG,.')2
Ny =4m> =47(2GM,, 12 ] Ay =[N /4 Aig=m1v=2GM,em/v}v

AN, =11¢s . =4mAr = 47(2GAM 5, 12 ]

Ay, =\|TAN ¢, | 4

My, =1/ fig, = A [v=2GAM i 7/ v}V

N,o/ANjg,; = (MIG/AMIGJ)Z =7/(rAN g 11/3) =7/},

Ai/Dyg =N /AN 1

Aie/DAig = M16/AM 6, = TN g, = 11/ 2 = [T IAN 1, 1113) = [T /g,

Lig: =7AN ¢, 11/3

Ayi =37 g/ AT ¥

A =V,

B0 =UAN g, =T ¢ 13,50 (T 1Qm kT) 2 g,)

fh, =0T e 130,30 (1721 1(2am kT) g, )

I, = ¢, digi=111/3

Vie = Ji6itiei =V

AMIG,i /MIG = lIG,i It

MM ;i /M= 7
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Fig. 3. The KAHN counter-clockwise statistical physics bridge sequence K>A4->H-> N from the
LT-certainty ectropies K> A to the IS-uncertainty entropies H> N of the LIT revolution.

F. The Statistical Physics Bridges Viewed from the LIT Revolution Perspective
In Fig. 3 the principal statistical physics bridge results of the LIT revolution discussed earlier are conveniently

displayed. From this figure it is first noted that the entropy/ectropy bridge relationship 4 =+/7zV /2v* of the physical-life
quadrants is medium independent. This medium independence is also found to be true for the entropy/ectropy bridge
relationship K = VH of the mathematical-intelligence quadrants. On the other hand, it is also seen from Fig. 3 that when
one crosses any boundary between a physical-life quadrant and a mathematical-intelligence quadrant the relationships
among the entropies, ectropies or any combination of them becomes medium dependent. For instance, it is noted that
while the bridge relationship between the mover-ectropy A of the physical-life quadrant I and the processor-ectropy K of
the mathematical-intelligence quadrant IV is linear for a black hole since K, = A4,,, / 4,,,, it is nonlinear for an ideal

gas since K, = \/ J logZ(AIG /Ay )2 :
It is also of interest to note from Fig. 3 the medium independent quadratic relationship
r=I(M/AM)* (66)
between the ratio of a retained mass M to the fractional mass AM that escapes it every / seconds, and the retention

lifespan 7 in SI seconds of M. Since (66) is medium independent it will be used in the next section to investigate the
lifespan of biological systems.

4. An Illustrative Biochemistry Example

It is expected that the novel statistical physics bridge expressions summarized in Table 3 and also partially in Fig. 3
will find applications in diverse fields [11]. An interesting case that is discussed next is the study of the relationship
between lifespan and daily caloric intake of biological systems. Since the human lifespan and macroscopic parameters
are relatively well known, a preliminary study will be pursued for this case. For instance, the maximum human lifespan
is known to be longer than 120 years where the longest unambiguously documented lifespan is that of 122 years and 164
days by Jeanne Calment of France (1875-1997). It is also well known that our cells are made mostly of water H,O
molecules with a molar mass of 18.0151 g/mol. More specifically, for a typical cell approximately 65 % of its mass is
from H,O molecules which also constitute 98.73 % of all cell molecules [12]. Furthermore, the internal temperature of
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our bodies is of approximately 310 K. Using H,O molecules in our preliminary study and an assumed lifespan it will be
seen that expression (66) predicts a daily caloric intake that correlates well with expectations.

The development begins by using Clausius’ definition of thermodynamics-entropy [10] to model the daily digestion
of food of mass AM with the expression

ASDig:AQ/TDig:Cl CzAM/TDig in SI J/K units (67)
where AQ denotes the heat energy in SI J units of the digested food, Tp;, is the temperature of digestion in SI K units,
C;=4.2 J/cal is the amount of energy produced per calorie and C,=5,000 kcal/kg is the average amount of kilocalories
per digested kilogram. The product of C, and AM, i.e. C,AM thus yields the amount of kilocalories digested per day.

On the other hand, it is assumed that a matching or similar amount of mass AM in the form of a gas is exhaled daily
by the human body. In this way the body mass M remains unaltered from day to day. Associated with this gas exhalation
is the Boltzmann thermodynamic-entropy ASg,;, = Sy— §; where §; is the thermodynamics-entropy when the day begins
and S;>S; is when it ends. From (49) it is noted that ASy,, is given by

AS.,=8,-8,= k(J; +AJ) 1n(N/G,f /ANIG)_kJi ln(NIG,i /ANlcj Nior=Nigi=Ng

=kAJIn(N,, /AN, =3V /rAN,; = 7 /(rAN .11 /3)) (68)
Ny =471 =47(2GM /72 f (69)

AN, =1/, =4zAr® = 4z(2GAM /v2 ) (70)

g =alem)? @z kT in?)"(r/M)/3 (71)
c=g R 72)

m=M/J, =3kT /v, (73)
riIM=2G/v’ (74)

¢,=d,;/2 and ¢, =¢, +1 (75)
V=c/IT=4m/3 = M/1000 (76)

where: 1) zand /7 in (68) and (76) denote lifespan in seconds and retention pace in sec/m’, respectively; 2) the term
rAN;GIT3 in (68) corresponds to the time-dislocation of M or weavelength I=rAN;;/7/3=86,400 seconds for a single day;
3) J; signifies the number of H,O molecules that make up M; 4) AJ denotes the number of unknown particles forming the
exhaled gas mass AM; 5) Eq. (76) assumes that the human mass density is that of liquid water, thus, for instance, if
M=70 kg (154.3 Ibs) then ¥=0.07 m’ and r = 0.2557 m; and 6) T is the exhale temperature.
The Clausius thermodynamics-entropy (67) and the Boltzmann thermodynamics-entropy/retainer-entropy (68)
expressions are next equated to yield
21000,000AM /T,,,, = kA In(N 5 / AN, = 7/86.400=(M / AM Y ). (77)

From (77) or (66) the following relationship between the digested/exhaled (or fractional) mass AM and the assumed
lifespan 7 for a given mass M is found to be
AM =M /\7/86,400 = M / [365¢ (78)

years

where 7years corresponds to the number of years associated with the specified 7 in seconds. Notice from (78) that when
the lifespan 7. is increased in value, the amount of daily digested/exhaled mass AM decreases as is expected.

The statistical physics bridge equations (68)-(78) can then be solved under different assumptions for M, 7, etc. For
example, when M=70 kg, 7yeas=130 (i.e. 7=4.0997 Gsec), Tp;,;=T=310 K and d=16.1 for H,O at 310 K, it is found that
AM = 0.3214 kg for a daily caloric intake of C;AM=1,607 kcal (other results derived from (78) with M=70 kg are
G AM=1,827 kcal if 7years=100, C;AM=2,000 kcal if 7,..s=83.9, etc.). The remaining operating values for zye.s=130 are:
1) 6=1.6672; 2) V=0.07 m’; 3) r=0.2557 m; 4) N;c=0.8412 m* 5) ANz =1.7311 x 10° m?* 6) J=2.34 x 10*" H,O
molecules; 7) AJ=1.4643 x 10°® particles in AM with an average molar mass for AM of 1.3216 g/mol (e.g. this molar
mass is satisfied by carbon dioxide CO, molecules with a total mass of 0.1736AM=0.0558 kg, water H,O molecules with
a total mass of 0.0714AM=0.0229 kg and hydrogen H atoms with a total mass of 0.755AM=0.2427 kg); 8) a particle
escape speed of v,=19.118 mm/sec; 9) a particle kinetic rms speed of v,,,,=655.1496 m/sec; 10) a retention pace of

TE=58.567 Gsec/m’; 11) a surface fix of ¢Sm =57.768 kcycles/m*; and 12) a surface pace of I7 Sza:¢Sm =4.9911

Proc. of SPIE Vol. 7708 77080U-17



Gsec/m?*. Finally, it is noted that the previous preliminary study can be readily extended via the multi-species ideal gas
model of Table 3 to more elaborate molecular models for M. In Appendix C a two-species extension is given.

5. Conclusions

This paper revealed statistical physics bridges for the four quadrants of the latency information theory (LIT)
revolution that included the discovery of the time dual of thermodynamics. While the physical-life quadrants I and III of
the LIT revolution addressed the efficient use of the life time of physical signal movers and the life space of physical
signal retainers, respectively, the mathematical-intelligence quadrants II and IV of the LIT revolution addressed the
efficient use of the intelligence space of mathematical signal sources and the processing time of mathematical signal
processors, respectively. Several statistical physics bridge results were derived. First, it was found that thermodynamics
advanced via its thermodynamics-entropy a medium dependent bridge between the IS-uncertainty source-entropy of
quadrant IT and the IS-uncertainty retainer-entropy of quadrant III. Second, it was found that there is an inherent medium
independent bridge between the LT-certainty mover-ectropy of quadrant I and the IS-uncertainty retainer-entropy of
quadrant III. This observation then led to the discovery of the LT-certainty dual of IS-uncertainty thermodynamics that
was named lingerdynamics. Lingerdynamics was then found to establish via its own lingerdyanmics-ectropy a medium
dependent bridge between the LT-certainty mover-ectropy of quadrant I and the LT-certainty processor-ectropy of
quadrant IV thus yielding a complete statistical physics bridge for the entropies and ectropies of the LIT revolution. For
the specific cases of a UNBH medium and an ideal gas medium, complete statistical physics bridges for the LIT
revolution were revealed. The paper ended with a human lifespan example that illustrated the discovery of a medium
independent quadratic relationship between the lifespan of a mass in a volume and the ratio of this mass to the fractional
mass that escapes it over some specified cyclic time span, e.g. the 86,400 seconds of a single day. In particular, this
human example revealed for each assumed human lifespan a daily caloric intake that correlated well with expectations.

Appendix A
The Derivation of the Entropy Statistical Physics Bridge for an Ideal Gas

In this appendix the entropy statistical physics bridge expression for an ideal gas (25), i.e.,
81/ In2k = H,g = J(In0V,iT% 1JB)+c,)/In2 = J10g,(N g / AN g =11 /11 = (M, | AM g ), (A1)
is derived. The derivation starts with the Boltzmann thermodynamics-entropy for an ideal gas [10]

S,e = kI (In(V,,T /JB) +c,) (A2)
B=T""X’/g (A.3)
X =h/~N2mmkT (A4)

where all the variables in (A.1)-(A.4) where defined earlier in (25)-(33). Next substituting (A.4) in (A.3) one derives
B=n/gQmmk)**. (A.5)

Next using (A.5), Vig=rNig/3, m=Mc/J and ¢, = In e in (A.2) it follows that
S1e =k (0, T 1 JB)+¢, )= kI In(V,o T ¢ / JB) = kJ In(gy_N ) (A.6)
s, = o*(em)m(27z kT/hz)m(r/MlG )/3 (A7)
c=g oo S22 (A8)
Next it is noticed that the sphere based retainer-entropy /Ny is given by the expression

N =Wyo =477 = 47(2GM 1 12} (A.9)

v, =A2GM ;¥ (A.10)

where v, is the escape speed from the N sphere that has at its center the gas mass M that is assumed in this model to
be a point-mass. Next, similarly as in (16)-(19), (24) for a UNBH the dimensionless argument ¢SI(‘ Nj¢ of the natural

algorithm in (A.6) is modeled as follows
s, Nic =Ni¢/ANi6 =716/li =(M/AM )’ (A.11)
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AN 1 =3AV | Ar = 47Ar® = 47(2GAM /v | (A.12)
T =Vigll (A.13)
l; =AN I 7/3 (A.14)

where: 1) ANy is assumed to be a small fractional retainer-entropy, i.e., AlV;¢ << Njg, that retains a small fractional
mass AMjg, i.e., AM;G<<M)¢, in its sphere of radius Ar, and whose molecules can escape the gas at a speed greater than
or equal to the gas escape speed v,; 2) /7is the pace of retention in SI sec/m’ of the ideal gas in the volume Vig; 3) 7 is
the lifespan of the ideal gas; and 4) /;; is the cyclic time span (or weavelength) of escape from the ideal gas mass M;; of
the fractional mass AM,s. Expression (A.1) then surfaces when (A.11) is substituted in (A.6) and the resulting expression
for S}¢ 1s substituted in S;q /In2k=H .

Appendix B

The Discussion of the Statistical Physics Bridges Summarized in Table 3 for the UNBH and Ideal Gas
In this appendix the entries of Table 3 are discussed starting from the top of the table and then moving down on it:
e The UNBH ectropy bridge Z,, =K, = fo, Apy = Apy/Ay,, 15 the LT-certainty dual of the UNBH entropy

bridge Syen =Hpy =65, Npy =Npy/Ny, - The bridge from Sy ey to Zgy is Z,, =4S WEH Regarding these

bridge expressions the following seven notes are made:

1.

The mover-ectropy expression A, =m/c=2GM /¢’ is the LT-certainty dual of the retainer-
entropy expression v, =4 :4”(2GMEH / CZ)Z. The bridge from Nggto Agnis 4., =[N, 14c* -

The bor mover-ectropy expression A, =1/ f,, =m2\r/c=2GMy, 7/ ¢’ is the LT-certainty dual of the
bit retainer-entropy expression N, =1/¢y =4\ :4”(2GMBn /C2)Z. The bridge from N to Ag,, is
The mover-ectropy ratio expression A,, /4, =M., /My, = m/cA,, = m/ Ay, =t /("N sz /3) =[t/1,, 18
the LT-certainty dual of the retainer-entropy ratio expression N /N gy =(M ) /M Bh)z
=7/(rNy,x/3) =1/l . The bridge from Ngy/Np; t0 Apu/Apor 1S Ay /Ay, =N py/Ng

it *

The bor wavelength expression /1EH ZCAB is the LT-certainty dual of the bit weavelength

or

expression /., =rN,, 7/3. The bridge from Agy to ley is A, = m

The bor frequency expression f,, =1/ AB”rz\/m is the LT-certainty dual of the bit
surface fix expression g =1/N, =cg/1920In2 . The bridge from g to fenis f,, = m :
The bor velocity expression v, = f,, A, =c is the LT-certainty dual of the bit surface pace
expression /Iy =g I, =ry/3.Thebridge from [T, to veyis v, = \/W .

The relationship M, / M, = Ay, / 7 equating the mass fraction M, / M, to its wavelength to
space-dislocation fraction A, /7 is the LT-certainty dual of the square root relationship

M,, /M., =l /t relating the mass fraction M, /M,,to its weavelength to time-dislocation

squared fraction,//,,, /7 . The bridge from [, /7 to Ay, /7wris Ay, /nr=4l,, /7.

o The single species ideal gas ectropy bridge 72 = k2 = Jlog,(f,;A;; = A;e/M,;) 18 the LT-certainty dual of the

single species ideal gas entropy bridge Sp6=H= J10g2(¢sm Ny = NIG/ANIG)' The bridge from Sy ¢ to Zj is

Zio=Ser Regarding these bridge expressions the following seven notes are made:

1.

The mover-ectropy expression AIZG = (m,/v)2 = (ZGM . Gﬁ/vjv)z is the LT-certainty dual of the retainer-

entropy expression N, =4z = 477(2GM1G /v )2. The bridge from Nygto As is A, =aV,, /4v* -
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2. The mover-ectropy expression AA;. =1/ f7. = (mAr/v)® :(ZGAMzc” /Vjv)z is the LT-certainty dual of
the retainer-entropy expression AN, =1/¢y =4\ = 47[(2GAMIG /VEZ)Z. The bridge from ANy to Adjg
1S Adyy =\|7AN ¢ /47 .

3. The mover-ectropy ratio expression (AIG/AAIG =mNAA,, = /A, = M, ,/AM, IG)Z =7/(rAN,I1/3)=1/1,;
is the LT-certainty dual of the retainer-entropy ratio expression
N,o/AN; =(M,o/AM . =7/(rAN ;11/3) =7 /1. The bridge from Nig/ANig to  Ai/Adig s

A/AAg = | Ng/AN 1 -

4. The IG wavelength expression A, =vAA, is the LT-certainty dual of the IG weavelength expression
1, =rAN,11/3 . The bridge from A;¢ to Iy is Ay :W.

5. The 1G frequency expression f, =1/AA,, = \/4v2rTCV e’ g(2mmkT)"'* /32JT**h* is the LT-
certainty dual of the surface fix expression g =1/AN =T e g(2mmkT)*'* /3JT>*h*. The
bridge from bs.. toficis fo; = \/W

6. The IG velocity expression v, = f,;4,; =V is the LT-certainty dual of the surface pace expression

I, =g 1, =rI1/3. The bridge from [, tovigis v, =.[3¢*IT; /ITr -
7. The relationship AM,./M,; = A,;/ 7 equating the fractional mass fraction AM,;/M,; to its

wavelength to space-dislocation fraction A,./m is the LT-certainty dual of the square root
relationship AM ./ M, =./l,,/7 equating AM,./ M, to its weavelength to time-dislocation
fraction squared /I, . /7 . The bridge from [,./7 to A;g/7wris Ao /mr=.ll,;/7 .

The third and final topic of Table 3 concerns the Gibbs theorem for the thermodynamics-entropy of an ideal gas
with Q different types of species [10]. The expression for the ideal gas thermodynamics-entropy Sj¢ is given by

the sum of the thermodynamics-entropy contributed by the O species, ie.,S§,, = il S16.
- kza J, ln(V,GTC”eC” /J, B) where B = ZiTy ’X} /g, and X, = h/.[2zm kT . From this expression it is noted
that since §,;; = kJ, ln(V,GT e/ J,.B) each species thermodynamic-entropy contribution only varies from

the others if its number of molecules J; is different. On the other hand, the ideal gas lingerdynamics-ectropy
squared Z;i® is given by the sum of lingerdynamics-entropy contributed by the O species squared, i.e.,

z2 :zilzfai :Zilj[ logz(V,GT“'”e"” /J[B) . The bridge from Sy to Zjg is given byz, - [§,./In2k and
from Sy, to Zg,; is given by Z 160 = m for all i. Regarding these multi-species thermodynamic-
entropy and lingerdynamics-ectropy expressions the following notes are made:
1. The Gibbs theorem ectropy bridge 72 = k> = ZQ:I K2, = ZQ:I J log, ( fres AIG)Z - ZQ:l J log, ( A /AAIG,i)z is the
LT-certainty dual of the Gibbs theorem entropy bridge Sue=Hig=Y" Hg=Y"J, 10g2(¢s,6‘, Ny
=32 J,log, (N /AN )" The bridge from Sy,6 to Zigis Z,, = m .
2. The mover-ectropy expression A,Z o =( vy = (2GM o/ vjv)z is the LT-certainty dual of the retainer-
entropy expression N, =4z = 4”(ZGM1<; /v )2. The bridge from Njgto AsG is 4, = \[av,, /4y -
3. The mover-ectropy expression AAIZG,;‘ =1/ f1§;,,- = (7, [v)? = (2GAM1G,,- T /Vezv)z is the LT-certainty dual of

the bit retainer-entropy expression AN, =11, =4nAr’ = 4”(2GAMIG,,- /‘,82)Z . The bridge from ANg,; to

AAiG,iis Adyg, =\[TAN g, 1 4v* -
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4. The mover-ectropy ratio expression ( A/Myg; = MG, = 11/ 2, = Mg /AMIG,I')Z = /AN 1, TT/3) =/ Ly,
is the LT-certainty dual of the retainer-entropy ratio expression N,i/AN ;= (M1 /AM, Gi)z
= T/(FANIGJH/:}) = T/ZIG,i’ The brldge from ng/AN[G,,' to Alg/AA]G’,' is AIG/AAIG,i = ,NIG/ANIG,i .

5. The IG wavelength expression A,..=cAA,., is the LT-certainty dual of the IG weavelength
expression L, =1AN,,IT/3. The bridge from Asq, to lig,i is 2, i = 37 L,/ Al r -

6. The IG frequency expression f.¢, . =4v’rT" e /37J, Za (T3’2h3 /(ZmikT)3/2gi) is the LT-certainty
dual of the surface fix expression g —1/AN,;, =rT%e” /3 Jl_zil (T3’zh3 J(2mm kT)* g,-)' The bridge

from ds, .10 JiGiis fIG,i = ,4v2¢s,c,i /.

7. The IG velocity expression v,; = f,;,4,5; =V is the LT-certainty dual of the surface pace expression

HS,G :¢S,G,iIIG-i =r[1/3. The bridge from 1, to vig is Vg = BVZHSIG /Iy .

8. The i" molecule relationship AM,;,/M,, =A,,,/m equating the fractional mass fraction

AM .,/ M ; to its wavelength to space-dislocation fraction A, /7 is the LT-certainty dual of the

1G,i

square root relationship AM .,/ M,; =./l,;;/ 7 equating AM 16:! M to its weavelength to time-
dislocation fraction squared /7. /7 . The bridge from lg:/7 t0 ﬂ’]G,i Imris L, /mr=\lc,/T-

Appendix C
The Extension of the Biochemistry Example of Section 4 to the Two Species Case
In this appendix the Gibbs theorem of Table 3 for multi-species is used to approximate the Boltzman
thermodynamics-entropy of a human with the following two species model

S = Syuer + S other (C.1

Sy = kJy (N /AN, = (M| AM,,)> =7 /(FAN 11 /3) =7 /1,,) (C2)
N =4z =4z2GM IV} ] (C3)

AN, =1/¢, =4z} =47(2GAM,, /v | =3BJ,, /T & (C4)
B=(1* IN2 |1/ gy \fmy +1/ goifmy) ) (C.5)

Soe =kJo (N /AN, = (M /AM,)> = (rAN,IT/3) =7 /1,)) (C.6)
AN, =1/ ¢y =47Ar2 =4x(2GAM, V2| =3BJ, /1T e (C.7)

In particular, the two-species model assumes that 98.73% of the molecules of the human mass M is H,O and the
remaining 1.37% are of other types (in [12] a typical 20-micron human cell is noted to contain the following percentages
of different molecules: 1) 98.73% for H,0; 2) 0.74 % for other inorganic; 3) 0.475% for lipid; 4) 0.044% for other
organic; 5) 0.011% for protein; 6) 3x10” % for RNA; and 7) 3x10™"! % for DNA). Thus the number of water molecules
is

Jy=0.9873J (C.8)
and for the other molecules is
Jo=0.0137J (C9
where J is the total number of molecules in M. In [12] it is also stated that 65% of a typical cell mass is H,0O with
18.0151 g/mol. Thus assuming that 65% of M is H,O and that the J to Jy relationship of (C.8) holds it follows that

J=0.65x1000N,M/18.0151x0.9873) = 36.545 N\M (C.10)
where N, is Avogadro’s number. Next using (C.8) and (C.9) in (C.4) over (C.7) it follows that
AN,, /AN, =(AM,, | AM,,}' = J,, / J, = 72.0657 . (C.11)

From (C.11) it then follows that
AM,, |AM ,=.J,, J, =8.4892. (C.12)
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Next expressing AMy and AMj in terms of the total fractional mass AM of M where

AM =AM, +AM , (C.13)

it follows from (C.12) and (C.13) that
AM,, = AM /(1+1/8.4892) = 0.8946AM (C.14)
AM , = AM /(1+8.4892) =0.1054AM (C.15)

Next using (C.14), (C.15), (C.8) and (C.9) in (C.1), (C.2) and (C.6) the following two species entropy equation results
S = kJ(In(M / AM)> +0.98731n(1/0.8946) +0.0137In(1/0.1054)° )= kJ(In(M / AM)* +0.2816)  (C.16)
Equation (C.16) can then be used to derive the exhale entropy expression as was done for (68) in Section 4 to yield
AS,, =S, -8, =kAJ(In(M /AM )’ +0.2816) (€17

(M/AM)* =N /AN =7 /(rANIT/3)=1/1 (C.18)

Finally the Boltzmann exhale entropy (C.17) is equated to the Clausius digestion entropy (67) with the weavelength /
value set to 86,400 seconds for a single day to yield the digestion/exhale entropy expression

21000,000AM /T,,, = kAJ(In(N / AN =7 /86,400 = (M / AM ) }+0.2816). (C.19)

As previously done in Section 4 for the single species case the above equations can then be solved for different

cases of M, z, etc. For instance, when M=70 kg, rycus =130 (i.e. =4.0997 Gsec) and Tp;,=T=310 K, it is found that

AM=0.3214 kg for a daily caloric intake of C;AM=1,607 kcal, [;,;=86.4 ksec, ¢S,G =57.768 kcycle;/mz, 13=69.147 ksecs,

@i, =72.182 keycley/m’, 15=0.960 ksec, ¢ =5.2 Meycley/m?, [Ty =11, = IT; =4.9911 Gsec/m’, etc.

Finally, it should be noted that the two-species methodology discussed in this appendix can be readily extended to
more than two species via the Gibbs theorem of Table 3. It is hoped that a multi-species model that includes most human
mass constituents will eventually lead us to exhaled gas molecule quantities and forms that correlate well with
expectations. Such an outcome should in turn lead us to a better understanding of human lifespan upper bounds.
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