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ABSTRACT 
 
In this third of a multi-paper series the discovery of a space dual for the laws of motion is reported and named the laws of 
retention. This space-time duality in physics is found to inherently surface from a latency-information theory (LIT) that 
is treated in the first two papers of this multi-paper series. A motion-coder and a retention-coder are fundamental 
elements of a LIT’s recognition-communication system. While a LIT’s motion-coder addresses motion-time issues of 
knowledge motion, a LIT’s retention-coder addresses retention-space issues of knowledge retention. For the design of a 
motion-coder, such as a modulation-antenna system, the laws of motion in physics are used while for the design of a 
retention-coder, such as a write/read memory, the newly advanced laws of retention can be used. Furthermore, while the 
laws of motion reflect a configuration of space certainty, the laws of retention reflect a passing of time uncertainty. 
Since the retention duals of motion concepts are too many to cover in a single publication, the discussion will be 
centered on the retention duals for Newton’s Principia and the gravitational law, Coulomb’s electrical law, Maxwell’s 
equations, Einstein’s relativity theory, quantum mechanics, and the uncertainty principle. Furthermore the retention 
duals will be illustrated with an uncharged and non-rotating black hole (UNBH). A UNBH is the retention dual of a 
vacuum since the UNBH and vacuum offer, from a theoretical perspective, the least resistance to knowledge retention 
and motion, respectively. Using this space-time duality insight it will be shown that the speed of light in a vacuum of 
cM=2.9979 x 108 meters/sec has a retention dual, herein called the pace of dark in a UNBH of cR=6.1123 x 1063 secs/m3 
where ‘pace’ refers to the expected retention-time per retention-space for the ‘dark’ knowledge residing in a black hole. 
 
Keywords: space-time dual, time dual, latency, latency theory, information, latency-information theory, sourced-space, 
motion-time, processing-time, retention-space, bits, bors, processor ectropy, source entropy, sensor consciousness, 
channel capacity, knowledge aided, intelligent system, DARPA, KASSPER, laws of motion, laws of retention, motion 
coder, retention coder, speed of light, pace of dark, retention, motion, motion ectropy, retention entropy, physics, biology 
 
 
1. INTRODUCTION 
 

The laws of motion originated with Newton’s 1687 Principia [1] which laid out the mathematical principles of time, 
force, and motion that have served over more than three centuries as the essential catalyst for significant innovations. A 
fundamental application of these laws is in the design of a communication system [2]. This is the case since the objective 
of any communication system is to achieve knowledge motion with the least possible use of motion-time while subjected 
to design constraints. For instance, the designer of an electrical communication system will use Maxwell’s equations and 
spectral analysis tools to design a modulation-antenna subsystem, or motion-coder, for knowledge motion. The space-
dislocated knowledge for a ‘general’ communication system can be anything, e.g., the position and/or velocity of an 
object, the spin state of a photon, the charge of a fundamental particle, etc. On the other hand, the motion-time or 
lifetime penalty associated with knowledge motion cannot be avoided since there is an upper limit on the speed of 
motion that is given by the speed of light in a vacuum of approximately 2.9979 x 108 meters/sec. Nevertheless, when 
addressing motion problems one selects according to the  application at hand the appropriate  laws of  motion in  physics  
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to use. Some of these laws are Newton’s Principia and the gravitational law of classical mechanics, Coulomb’s electrical 
law, Maxwell’s electromagnetism equations, Einstein’s special and general relativity, quantum mechanics, the 
uncertainty principle, relativistic quantum mechanics, etc. Furthermore, all of these laws reflect a configuration of space 
certainty associated with knowledge motion, even if one is dealing with wave motions or as is the case in quantum 
mechanics a probabilistic interpretation is advanced for the location and/or velocity of small objects and/or fundamental 
particles.  

 
Unfortunately, however, the aforementioned laws of motion do not address another fundamental problem in physics 

that prominently surfaces from the time dual of a communication system, i.e., a recognition system [3]-[4]. This physics 
problem is that a recognition system requires a retention-coder for knowledge retention. A retention-coder is a write/read 
device for the retention of prior-knowledge. The recognition system’s retention-coder is the space dual of a 
communication system’s motion-coder. While the motion-coder design is concerned with motion-time (or lifetime) 
penalty issues of knowledge space motion, the retention-coder design is concerned with retention-space (or lifespace) 
penalty issues of knowledge time retention. Also while motion problems are governed by a configuration of space 
certainty, retention problems are governed by a passing of time uncertainty. Soon after I discovered latency theory’s 
sensor coding as the time dual of information theory’s channel coding in the summer of 2006 [5], I realized that for the 
laws of motion in physics, which addresses motion-time penalty issues, there must be a ‘laws of retention in physics’ 
dual which addresses retention-space penalty issues. Since this time I have researched this problem with the first 
retention-motion (or space-time) duality in physics results reported here. To illustrate this space-time duality an 
uncharged and non-rotating black hole (UNBH) will be used [6]. A UNBH is the retention dual of a vacuum since the 
UNBH and vacuum offer, from a theoretical perspective, the least resistance to knowledge retention and motion, 
respectively. In other words, while knowledge suffers the least lifetime penalty when moved thru a vacuum (e.g., a laser 
signal pays a lifetime penalty of approximately 15 msec when moved from New York to California via a fiber optics 
channel), knowledge suffers the least lifespace penalty when retained in a black hole (e.g., one kilogram of mass pays a 
lifespace penalty of approximately 1.3839 x 10-80 cubic meters when retained for 1,846 years in a UNBH [7]). Using this 
space-time duality for physics insight it is shown in Appendix A that the speed of light cM in motion-time/motion-space 
units has a retention dual, herein called the pace of dark cR, in expected retention-time per retention-space units given by 
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secs/m10 x 1123.6480
==

MM

M
R G

cc
h

                                                    (1.1) 

where Mh =1.0546 x 10-34 kg.m2/sec is Plank’s reduced constant of quantum mechanics and GM = 6.693 x 10-11 Nm2/kg2 

is the gravitational constant. Pace in ‘pace of dark’ refers to the expected retention-time per retention-space for the ‘dark’ 
knowledge residing in a black hole. Thus just like the value of cM tell us that knowledge cannot be moved at a rate faster 
than 2.9979 x 108 meters per second,  the value of cR tell us that knowledge cannot be retained at an expectation rate 
faster than 6.1123 x 1063 seconds per cubic meter of space. 
 

The paper is organized as follows. It begins with the discussion of the recognition/communication system in 
latency-information theory (LIT) which integrates in one picture four subsystems. The first two are the standard channel 
and source integrated (CSI) and sensor and processor integrated (SPI) coders of LIT [3]-[4] and the next two are a 
motion-coder and a retention-coder that naturally arise from LIT. In the next section in the same spirit as done with CSI 
and SPI coders, novel motion-time and retention-space bounds are defined for guidance in the design of motion-coders 
and retention-coders. Subsequently, starting first with Newton’s Principia the corresponding retention duals are found 
for the laws of motions. The paper ends with a conclusions section. 

 
2. LATENCY-INFORMATION THEORY (LIT) 

Latency-information theory provides performance bounds that guide the design of the general system displayed in 
Fig. 1. This general system consists of a communication system embedded in a recognition system [3]. In [3] a detailed 
description is given of the communication system and recognition system subsystems appearing in this figure. 
Nevertheless a succinct summary of these subsystems is advanced next. While a communication system is composed of 
a channel, source-coder, channel-coder and motion-coder, the time dual of a communication system, i.e., a recognition 
system, is composed of a sensor, processor-coder, sensor-coder and retention-coder. A channel is the medium through 
which knowledge must be space dislocated. A source-coder (encoder/decoder) replaces an inefficient signal-source with 
one yielding the smallest sourced-space (in binary digits (bits)) penalty possible. A channel-coder identifies the 
necessary overhead-knowledge for a more accurate transmission of the sourced-space. A motion-coder is a 
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transmitter/receiver device that moves knowledge from one location in space to another with the smallest motion-time 
penalty possible. A recognition system, as discovered in [3], uses prior-knowledge about a signal-processor’s input to 
enable the sensing of its output by a processing-time limited sensor when the fastest possible signal-processor 
replacement cannot achieve this task. A sensor is the time dual of a channel and is the reason for the required time-
dislocation of the processing-time to an earlier time via the use of prior-knowledge. The processor-coder is the time dual 
of the source-coder and replaces the signal-processor with one yielding the smallest processing-time (in binary operators 
(bors)) penalty possible. The sensor coder is the time dual of the channel-coder and its purpose is to identify the 
necessary prior-knowledge for an earlier beginning of the processing-time. A retention-coder is a write/read device that 
retains knowledge from one time instant to another with the smallest retention-space penalty possible. Information-
theory uses the sourced-space performance bound penalties of source-entropy H and channel-capacity C to guide the 
design of channel and source integrated (CSI) coders. On the other hand, latency-theory uses the processing-time 
performance bound penalties of processor-ectropy K and sensor-consciousness F to guide the design of sensor and 
processor integrated (SPI) coders. While the bounds H and C are governed by the uncertainty associated with the 
passing of time, the bounds K and F are governed by the certainty associated with the configuration of space. Finally, 
the laws in physics are used in the design of motion-coders and retention-coders. While the laws of motion are used for 
the design of motion-coders, in this paper a newly discovered space dual for the laws of motion, herein named the laws 
of retention, will be advanced for the design of retention-coders. In section 4 we will derive the laws of retention. 
However, first in the next section we will define performance bounds for use in the design of motion-coders and 
retention-coders. 

 
 
3. MOTION-CODER AND RETENTION-CODER PERFORMANCE BOUNDS 

The motion-coder performance bound, i.e., the motion-ectropy A, and the retention-coder performance bound, 
i.e., the retention-entropy N, defined here are similar in structure to those defined for a processor-coder, i.e., the 
processor-ectropy K, and a source-coder, i.e., the source-entropy H, respectively, in [3]-[4]. 
 
3.1 Motion-Ectropy A: The Motion-coder Performance Bound 

In the case of a motion-coder its motion-ectropy A in motion-time (or lifetime) penalty units is governed by a 
configuration of space certainty similar in nature to that which governs the processor-ectropy K in bors of SPI coders. 
Thus the motion-ectropy A has a similar minimax mathematical structure [3]-[4] in its definition, i.e.,  

                                        A = max(LM(z1),..,LM(zM))   in seconds per [ ]Mzz ,...,1=z                                          (3.1) 
where z is the motion-decoder vector output with M elements {zi} and LM[zi] is the motion-latency of zi which is defined 
as the minimum motion-time that is needed to obtain zi after the original motion system is redesigned subject to 
implementation motion constraints {CM [zi]} [3]. For instance, the original motion system can be an automobile that is 
used to transport a family of five (M=5) from New York to California and the redesigned motion system is implemented 
subject to the implementation motion constraint that one or more commercial airline planes may be used to transport the 
family. Thus  
 

                                 LM(zi) = g(CM [zi])   in second per zi                                                         (3.2) 
 

with g(CM[zi]) indicating that LM (zi) is a function of CM[zi]. For instance, in the case of our running example the value of 
LM(zi) can be quite different for each member of the family, since it is possible for all the members of the family to travel 
to California using different planes. In all the computations it will also be assumed that the constraint CM[zi] is governed 
by a configuration of space certainty as is the case in latency theory [3]. For instance, for our running example we will 
assume that the automobile or plane(s) will always leave and arrive on time. The design of a motion-coder is then 
approached using A as a motion-time (or lifetime penalty) performance bound for the desired knowledge space-
dislocation through motion-space. For instance, for our running example the value of A for our family of five can be of 
six hours of travel time from New York to California. Similarly as for a processor-coder [3], for which a processor-coder 
rate RPC is defined, a motion-coder rate RMC can now be defined which leads to the definition of either a lossless or lossy 
motion-coder. A motion-coder will be lossless when RMC is achievable, i.e., 

 MMC RR ≤≤A                                                                     (3.3)  
where RM is the motion rate of the original motion system. For instance, for our running example RM may be given by the 
48 hours that the family of five will take to travel by automobile from New York to California. A motion-coder will be 
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ideal when RMC=A and is equivalent to the original motion system when RMC=RM. On the other hand, a lossy motion-
coder is one that has an RMC that is not achievable, i.e., 

 A<≤ MCR0                                                                       (3.4) 
but is faster and simpler than a lossless motion-coder. For instance, for our running example we will have a lossy 
motion-coder when the movement from New York to California of the five member family is only implemented for the 
member of the family exhibiting the smallest motion-latency value, say of five hours, which is less than the six hours 
given by A. We will also achieve a significant implementation simplicity and airfare savings. 
 
3.2 Retention-Entropy N: The Retention-coder Performance Bound 

In the case of a retention-coder its retention-entropy N in retention-space (or lifespace) penalty per stored mass 
and/or energy is governed by a passing of time uncertainty similar in nature to that governing Shannon’s source-entropy 
H in bits of CSI coders. Thus the retention-entropy definition will have the same expectation structure as H [3]. In 
addition, N will be defined in terms of the microstate uncertainties in physics [6]. Also, a retention constant kR in cubic 
meters per retained mass and/or energy will be used for N. This retention constant will have a value extracted from 
UNBH conditions since a UNBH retention-coder provides the maximum expected retention-time per lifespace for the 
given mass and/or energy. Thus the retention-entropy is defined as follows 

][][
V

1
iR

i
i wIwP∑

=

=N     in m3  per { }Ω∈ ww ,...,1W                                            (3.5) 

where W is a knowledge discrete random variable (or random microstate) with Ω  outcomes (or microstate realizations) 
{wi} and IR[wi] is the retention-information provided by the outcome wi and given by the expression 

                                           ])[/1(log)( 2 ii
R

i
R

RiR wP
A
TkwI =  in m3 per wi                                                (3.6) 

with P[wi] being the probability of the microstate  wi whose value is driven by the passing of time, i
RT  is the expected 

retention-time of wi, 
i
RA  is the surface area of the volume wherein wi is retained, and kR is the retention constant 
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In addition, for the special case where all the microstates of W are equally likely and their expected retention-times and 
retention surfaces are equal it follows that 

          Wper  in   log 3
2 m

A
Tk

R

R
R Ω=N                                                    (3.8) 

The expression for kR (3.7) is derived using UNBH conditions and under the assumption that all microstates are 
equally likely. More specifically it is first assumed that the retention-entropy N is equal to the volume or retention-space 
of a UNBH, thus 

                                                      R
R

R
R V

A
Tk =Ω= 2logN                                                            (3.9) 

where VR is the UNBH volume. Next using the microstate thermodynamic entropy S=kMlnΩ= kMlog2Ω/ln2 expression in 
(3.9) where kM is Boltzmann’s constant it is found that 

                                                                      R
MR

R
R V

kA
STk ==  2ln N                                                          (3.10) 

Then using Hawking’s black hole thermodynamic entropy ( )MMMMR GckAS h4/3=  in (3.10) the expression  

                                                            R
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M
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G
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4
2ln 3

h
N                                                          (3.11) 

is obtained. Next solving expression (3.11) for kR it follows that  
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From equation (A.12) in Appendix A it is then found that for a UNBH the ratio TR/VR is the same as the pace of dark cR 
expression (1.1) under the assumption that the mass and/or energy starts its retention at 0=i

Mt . Thus 

MMMRRR GccVT h/480/ 2== is used in (3.12) to yield the desired result (3.7). Furthermore, since the UNBH is 

spherical in shape we use TR/AR= (TR/VR)( Rr /3) in (3.8) to obtain the equivalent expression 

Ω=Ω= 2
BH'

2 loglog
3 MR
R

RR mkrckN   in  m3 per W                                    (3.13) 

where 2/2 M
BH
MMR cmGr = is the Schwarzschild radius for a UNBH,  BH

Mm is the UNBH mass, and 
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In addition, to conform to the holographic principle [7] an alternative definition for the retention-entropy can be 
given in squared meter units. Thus the following holographic retention-entropy Nh is defined  
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=N     in  m2  per { }Ω∈ ww ,...,1W                                        (3.15) 

where W is a knowledge discrete random variable (random microstate) with Ω outcomes (or microstate realizations) 
{wi} and )( i

h
R wI  is the holographic retention-information provided by the outcome wi and given by the expression 
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with all the parameters of (3.16) being the same as those in (3.6) except that the retention surface area i
RA  has been 

replaced with the retention volume i
RV .  For the special case where all the microstates of W are equally likely and their 

expected retention-times and retention volumes are equal it follows that 

          Wper  in   log 2
2 m

V
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R

R
R

h Ω=N                                                   (3.17) 

It should be noted that when (3.17) is equated to the UNBH surface AR it is once again found, as expected, that kR is 
given by (3.7). Furthermore, if we let TR/VR =cR in (3.17), i.e., for a UNBH condition, it follows that  

                                                                 Wper  in   log 2
2 mk h

R
h Ω=N                                                      (3.18) 

where h
Rk is the holographic retention constant given by 

 
   693 10  x 5112.11920/ln2)/( 2ln /4)/(T −==== RMMMMRRR

h
R cccGVkk h   m2 per W          (3.19) 

 
The design of a retention-coder is then approached using N (or Nh) as a lower lifespace performance bound for 

the desired knowledge expected retention-time. A retention-coder will be lossless when  

RRC RR ≤≤N                                                                      (3.20) 

where RCR  is the retention-coder rate in m3 (or m2) per stored mass and/or energy and RR  is the retention rate of some 

initial retention system.  On the other hand, a lossy retention-coder is one that has a RCR  that is not achievable, i.e.,  

 N<≤ RCR0 .                                                                    (3.21) 
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4. THE LAWS OF RETENTION 
 In this section we will find the space dual of the laws of motion in physics, starting first with Newton’s 
Principia [1] and then moving on to its extensions. 
 
4.1 The Retention-Principia 

Refer to Fig. 2 A-D where a mass in motion is displayed. This mass will also be called a motion-mass and is 
given the notation mM when contrasting it to its space dual, i.e., a retention-mater mR that will be defined later. In Fig. 
2A the true nonzero occupancy-space S0 of mM is shown where S0 is said to be governed by a configuration of space 
certainty. Furthermore, mM can vary as a function of time, i.e., mM (tM), where the time tM will also be called a motion-
time to contrast it with the expected retention-time TR of retention problems to be discussed later. An example of mM(tM) 
is a space rocket whose mass changes, due to its fuel consumption, as tM increases. In Fig. 2B we present an idealization 
of the occupancy-space 1

0S  of )( 1
MM tm for the motion-time 1

Mt . The idealization consists of representing )( 1
MM tm by a 

point (shown in the picture as a rectangle) in three dimensional vector space sM=[sM,x,sM,y,sM,z], i.e., Ms→1
0S . To 

facilitate the discussion of the space-time duality in physics it will be assumed in this paper, unless specified otherwise, 
that all motions are in one dimensional space, thus when describing this case the scalar space sM variable will be used. In 
addition, any space location used for motion purposes will also be called motion-space to contrast it with the retention-
space SR (in cubic meters) of retention problems to be discussed later. Fig. 2C is similar to Fig. 2B except that it presents 

)( 2
MM tm after its space-dislocation (SD) from 1

Ms to 2
Ms , i.e., 12

MM ssSD −= , and resulting in the lifetime penalty (LTP) 
12
MM ttLTP −= . The difference of the rectangle horizontal length of Fig. 2C from that of Fig. 2B indicates that mM (tM) 

has paid a lifetime penalty for its space-dislocation. In Fig. 2D the principia model for the movement of Mm is 
summarized. In Table 1A a summary is provided of well known motion-principia concepts that relate to the motion-
principia model of Fig. 2D. These concepts will be contrasted next with those of the retention-principia model. 

 
Refer to Fig. 2 E-H where a retention-mater mR is displayed which is the space dual of a motion-mass mM. mR  

is given in Joules.m3/sec units and is a function of mM as will be seen shortly. In Fig. 2E the true space distributed 
occupancy-time T0 of mR is shown where T0 is governed by a passing of time uncertainty. Furthermore, mR can vary as a 
function of retention-space SR in cubic space units, i.e., mR(SR). This is the case, for instance, with a UNBH whose mR 
increases as its volume VR=SR increases when it receives new motion-mass and/or motion-energy. In Fig. 2F we present 
an idealization of the occupancy-time 1

0T  of )( 1
RR Sm for the initial retention-space 1

RS . The idealization consists of 

having the retention-mater )( 1
RR Sm  characterized by a single expected retention-time 1

RT  (shown in Fig. 2F as a circle), 
i.e., 11

0T RT→ . Fig. 2G is similar to Fig. 2F except that it presents )( 2
RR Sm  after the time-dislocation (TD) from 

1
RT to 2

RT , i.e., 12
RR TTTD −= , and resulting in a lifespace penalty (LSP) 12

RR SSLSP −= . The difference in radius of the 
circle of Fig. 2G from that of Fig. 2F indicates that mR(SR) has paid a lifespace penalty for its time-dislocation. For 
example, in our running example, the UNBH must pay the penalty of increasing its lifespace SR (or equivalently its 
volume VR since SR=VR) to increase its retention-time from 1

RT  to 2
RT . Furthermore, this lifespace increase is 

accompanied by a mass increase as noted from the volume-mass relation for a UNBH derived in Appendix A (A.11). In 
Fig. 2H the principia model for the retention of Rm  is summarized. This retention-principia model is the space dual of 
the motion-principia model of Fig. 2D. Associated with the retention-principia model the most fundamental retention-
principia concepts are then summarized in Table 1B.  The motion-principia and retention-principia concepts of Table 1A 
and 1B are now contrasted: 1) the retention-space SR in m3 is the space dual of the motion-time tM where SR and tM 
assume independent variable roles; 2) the retention-time TR in sec is the space dual of the motion-space sM where TR and 
sM assume dependent variable roles in terms of SR and tM, respectively, e.g., from (A.10) a UNBH’s retention-time is 
given by RRRRR ScVcT ==  when the BH

Mm ’s retention begins at the zero time instant, i.e., 0=i
Mt ; 3) the 

retention-tempo vR=dTR/dSR in sec/m3 is the space dual of the motion-velocity vM=dsM/dtM, e.g., for the UNBH 
vR=dTR/dSR= cR since RRR ScT = ; 4) the retention-pace bR=|vR| in sec/m3 is the space dual of the motion-speed bM and 
for the UNBH it is the same as the pace of dark cR; 5) the retention-escalation aR=dvR/dSR in sec/m6 is the space dual of 
the motion-acceleration aM=dvM/dtM where aR=0 for the UNBH; 6) the retention-mater mR in Joule.m3/sec is the space 
dual of the motion-mass mM and for a UNBH is given by ( ) == BH

MRM
BH
R mccm /2 1.4704 x 10-47 BH

Mm Joule.m3/sec 
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(derived next); 7) the retention-energy RRR vmp =  in Joules is the space dual of the motion-momentum MMM vmp =  
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BH
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BH
R cSmSE =  and 2)()( MM

BH
MM

BH
M ctmtE = . The mater-viscosity 

equivalence equation 2)()( RRRRR cSmSE =  is the space dual of the Einstein’s mass-energy equivalence equation 
2)()( MMMMM ctmtE = . From the previous BH

RW expression the energy-viscosity duality equation )( RR SE = )( MM tE cR 
also arises. Finally it is noted that our earlier use of a UNBH to illustrate retention ideas required us to use physics 
motion concepts that went far beyond Newton’s Principia, e.g., when 2

MMM cmE =  was used to derive the mass-mater 
duality relation ( ) MRMR mccm /2= . 
 
4.2 The Retention Special Relativity 
 Refer to Fig. 3 where Einstein’s special relativity along with the invariant Minkowski spacetime length is 
displayed in a space-time duality in physics form. In Fig. 3A-C the motion special relativity is shown while in Fig. 3D-F 
the retention special relativity is displayed. In Fig. 3A the invariant space length lM (in motion-space units) of motion-
spacetime is given while in Fig. 3D the space dual invariant time length lR (in retention-time units) of retention-
spacetime is displayed. In Fig. 3B the motion Lorentz transformations between the observations of two motion inertial 
(or constant velocity) frames is depicted while in Fig. 3E the space dual retention transformations between the 
observations of two retention inertial (or constant tempo) frames is given. Finally, in Fig. 3C the motion Einstein 
invariant energy-momentum equation is shown where 2

MM cm  with mM at rest (or zero velocity) is motion inertial frame 
invariant, while in Fig. 3F the space dual retention invariant viscosity-energy equation is presented where 2

RRcm  with mR 
at rest (or zero tempo)  is retention frame invariant.   
 
4.3 The Retention-Gravidness and Retention-Exalted Law 
 Refer to Fig. 4 where Newton’s gravitational law is displayed in its space-time duality in physics field form. In 
Fig. 4A-D the motion-gravitational law case is shown and in Fig. 4E-H its space dual is displayed. This space dual is 
named the retention-gravidness law: in Table 2 space-time duality in physics terms that do not already appear in Table 1 
are given for ease of reference. In Fig. 4A-B two different motion-masses are shown that share the same motion-time tM. 
This is reflected in the space-dislocation model of Fig. 4C where both masses are described using the same rectangle 
length. Furthermore, in Fig. 4C massless but energetic gravitons speeding at the speed of light are displayed that carry 
the gravitational field in both directions. It is assumed here that the two masses exist in a vacuum. Thus, a lifetime 
penalty of MMM cssLTP /12 −= governs the graviton movement. Since this lifetime penalty is the smallest possible one 

it is the same as the motion-ectropy A, i.e., A= MMM cssLTP /12 −= . In Fig. 4D expressions for the gravitational force 
21←G

Mf acting on the mass 2
Mm  and due to the gravitational field 1

MG  of 1
Mm is given. Next in Fig. 4E-H the retention 
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dual is displayed where Fig. 4E-F display two different maters that share the same retention-space SR. For instance, for 
our UNBH running example 1

Rm  can have the center of mass of its associated 1
Mm  in the middle of the UNBH while 

2
Rm  can have the center of mass of its associated  1

Mm  just inside the event horizon. Since these two maters share the 
same retention-space SR they are shown in the time-dislocation model of Fig. 4G with the same circle radius. 
Furthermore, in Fig. 4G materless (i.e., mR=0) but viscositic retention-gravids pacing at the pace of dark are displayed 
carrying the retention-gravidness field (the space dual of the gravitational field) in both directions. It is assumed here that 
the two maters exist in a black hole (the space dual of a vacuum). Thus, a lower bound lifespace penalty of 

RRR cTTLSP /12 −==∆N  governs the gravid retention where N∆  denotes a retention-entropy change. Finally in Fig. 

4H expressions for the gravidness pressure 21←G
Rf  acting on 2

Rm and due to the gravidness field 1
RG , in 

Viscosity/(Joule.meter3) units, of 1
Rm are given. These space dual expressions surface naturally from UNBH conditions 

where a special note is made of the fact that the denominator of the gravidness field 1
RG  is inversely proportional to the 

absolute value of the time-dislocation between the two maters, i.e., 12
RR TTTD −= , taken to a power of 4/3 rather than 

the power of two for space-dislocation as occurs in the motion case. The derivation of this result begins with the 
assumption that there are two point ‘motion’ masses in the UNBH. One is the motion-mass 1

Mm which is modeled as a 
point mass residing in the center of the UNBH and the other motion-mass 2

Mm residing just inside the event horizon. The 

motion-gravitation force expressions of Fig. 4D are then used to yield  22121 / RMMM
G

M rmmGf =←  where rR is the 
retention radius of the UNBH. Then dividing this expression by the surface area AR of the UNBH and using the mass-
mater duality expression ( ) BH

MRM
BH
R mccm /2= and cR=TR/VR for a UNBH the expressions of Fig. 4H surface. 

 Refer to Fig. 5 where Coulomb’s electrical law is displayed in its space-time duality in physics field form.  In 
Fig. 5A-D the motion-electrical law case is shown and in Fig. 5E-H its space dual, i.e., the retention-exalted law, is 
displayed. In Fig. 5C massless but energetic photons speeding at the speed of light thru a vacuum are displayed that 
carry the electric field in both directions. In Fig. 5E-F the space dual of two motion-charges, i.e., the retention-clogs 1

Rq  
and 2

Rq , are shown that share the same retention-space SR. In Fig. 5G the corresponding time-dislocation model is shown 
with materless but viscositic retention-portages (the space  dual of a motion-photon) pacing at the pace of dark in a 
black hole are displayed that carry the retention-exalted field (the space dual of  the motion-electrical field) in both 
directions. In Fig. 5H the retention-exalted law is shown and is derived using a similar approach as that suggested earlier 
to derive the retention-gravidness law of Fig. 4H. Furthermore, when deriving this law the charge-clog duality 
relationship ( ) MRMR qccq /2= must be used which is found using black hole conditions, as done earlier to derive the 
mass-mater duality equation ( ) MRMR mccm /2= . Finally it is noted that similarly to the GR of Fig. 4H the retention-
exalted field ER, in Viscosity.sec2/(C.meter5) units, of Fig. 5H is inversely proportional to the absolute value of the 
retention time-dislocation 12

RR TTTD −=  raised to a 4/3 power. 
 
4.4 The Retention Weave-Pellet Duality 
 Refer to Fig. 6 where the motion wave-particle duality and its space dual are shown. In Fig. 6A the motion-
frequency fM is displayed in motion-wave ZM field cycles per second while in Fig. 6C the space dual retention-fix fR is 
shown in retention-weave (the space dual of a motion-wave) ZR field cycles per cubic meter. Examples of ZM are the 
motion-electric EM and motion-magnetic BM fields of a motion-electromagnetic motion-wave while examples of ZR are 
the retention-exalted ER and retention-mesmeric BR fields of a retention-exaltmesmeric retention-weave to be defined 
shortly. Also in Fig. 6A the motion-wavelength λM is given in space-dislocation per motion field cycle while in Fig. 6C 
the retention-weavelength λR is given in time-dislocation per retention field cycle. In addition, in Fig. 6A the relation 
cM=fMλM for massless motion-photons and motion-gravitons is shown while in Fig. 6C the space dual relation cR=fRλR for 
materless retention-portages and retention-gravids is given. Also, in Fig. 6A the motion wave-particle duality 
expressions are shown relating pM and EM to λM  and fM, respectively, via the motion Plank’s constant hM. while in Fig. 
6C the retention weave-pellet duality expressions are shown relating pR and ER to λR  and fR, respectively, via the space 
dual of Plank’s constant hR. Furthermore, in Fig. 6C motion-retention duality relationships between the p, E, λ and f are 
advanced where the one half quantum motion-retention duality hR=hM/2 is highlighted. This quantum duality relationship 
was found via the Margulus-Leviton theorem [6] expression 2/MMR ET hπ=  where EM is the minimum average energy 
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needed for a particle’s spin up or down state to remain no longer than the retention-time TR. Thus since λR is the same as 
the time-dislocation per retention field cycle, i.e., a spin up followed by a spin down for this case, it then follows that 
λR=2TR, which when substituted in 2/MMR ET hπ=  yields the  desired result RRRMMMR hphE ==== λπλ 2/h . In 
Fig. 6B the De Broglie wave-particle relations for particles with or without mass is shown while in Fig. 6D the retention 
weave-pellet relation for pellets with or without mater is given. Finally the frequency-fix duality 
relation RMRMR cfhhf )/(= of Fig. 6C has an interesting interpretation. It is that it relates the Hawking 
frequency BH

MMM
H

M mGcf π16/3= of the radiation energy (positive and negative) of a virtual particle pair, where one particle 
moves into and one moves out of the black hole at the event horizon, to the fix

R
H

MRM
F

R cfhhf )/(= of the retention-
ramification (the space dual of motion-radiation) viscosity (positive and negative) of the space dual of a virtual particle 
pair, i.e., a virtual pellet pair, where one pellet is retained into and the other is retained out of the black hole at the event 
horizon. In future publications more will be said about the interactions between virtual particle and virtual pellet pairs. 
 
4.5 The Retention Quantum Mechanics and the Retention Uncertainty Principle 
 Refer to Fig. 7 where Schrodinger’s quantum mechanics and Heisenberg’s uncertainty principle relations are 
displayed in their space-time duality in physics form. In Fig. 7A KEM, PEM and EM denote the motion kinetic energy, 
potential energy and total energy of a particle while in Fig. 7C KER, PER and ER denote the kinetic viscosity, potential 
viscosity and total viscosity of a pellet. Also while PEM is a function of the motion-space location of a particle, PER is a 
function of the expected retention-time of a pellet.  Furthermore, while the squared magnitude of the motion wave 
function Mψ , i.e.,  2

Mψ , inform us about the probability of finding a particle at some sM, the squared magnitude of the 

retention weave function Rψ , i.e.,  2
Rψ , inform us about the probability of finding a pellet with some expected 

retention-time TR. On the other hand, the space-momentum uncertainty principle expression 2/MMM ps h≥∆∆  and the 
‘motion’ time-energy uncertainty principle MMM Et h≥∆∆ of Fig. 7B have as a space dual the ‘retention’ time-energy 
uncertainty principle expression 2/RRR pT h≥∆∆  and the space-viscosity uncertainty principle expression 

RRR ES h≥∆∆  of Fig. 7D, respectively. Finally, in Fig. 8A the relativistic motion quantum mechanics expression for a 
free (PEM=0) mass is shown while in Fig. 8B the space dual relativistic retention quantum mechanics equations for a free  
(PER=0)  mater is presented. Finally, it is noted that the duality expressions of Figs. 7-8 are connected via hR=hM/2. 
 
4.6 The Retention-Hefty and the Retention-Mesmeric Laws 
 In Fig. 9 the motion-heaviside and its space dual, i.e., the retention-hefty, laws are given. On the other hand, in 
Fig. 10 the motion magnetic and its space dual, i.e., the retention-mesmeric, laws are depicted. From these two figures it 
is noted that these laws are associated with motion rotations and retention rotations of masses, maters, charges and clogs. 
The derivation and discussion of these results will be given in a later publication due to space limitations of the current 
manuscript. It is noted, however, that the hefty field HR and the mesmeric field BR are also, as expected, inversely 
proportional to the absolute value of 12

RR TTTD −=  raised to a 4/3 power. 
 
4.7 The Retention-Gravidhefty and the Retention-Exaltmesmeric Equations 
 In Fig. 11A-B the motion-gravitoheaviside equations and the motion-electromagnetic equations (Maxwell’s 
equations) are shown. In Fig. 11C-D the retention-gravidhefty equations and the retention-exaltmesmeric equations are 
depicted. The derivation and discussion of these results will be given in a later publication due to space limitations of the 
current manuscript.  
4.8 The Retention-Gravidhefty and the Retention-Exaltmesmeric Weaves 
 In Fig. 12A-B the motion-gravitoheaviside wave equations and the motion-electromagnetic wave equations are 
shown. In Fig. 12C-D the retention-gravidhefty weave equations and the retention-exaltmesmeric weave are displayed. 
The derivation and discussion of these results will be given in a later publication due to space limitations of the current 
manuscript.  
4.9 The Motion General Relativity and the Retention General Relativity Equations 
 The general relativity case will be addressed in a later publication. 
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4. CONCLUSIONS 
 The discovery of the space dual of the laws of motion in physics has been reported in this paper and named the 
laws of retention. In the laws of motion domain knowledge motion is modulated by electromagnetic and 
gravitoheaviside fields carried by massless photons and gravitons, respectively, while in the novel laws of retention 
domain knowledge retention is modulated by exaltmesmeric and gravidhefty fields carried by materless portages and 
gravids, respectively. The new laws of retention in physics should bring to a recognition system’s study, design and 
implementation a level of sophistication that rivals that presently applied to a communication system’s study, design and 
implementation. In addition, the integrated use of motion and retention laws in latency-information theory (LIT) 
problems should offer the possibility of deriving synergistic solutions to complex theoretical as well as practical 
problems. Two novel performance bounds were also introduced. One was motion-ectropy, which advances a lower 
bound for the lifetime penalty suffered by knowledge due to a motion-space location change or space-dislocation, while 
the other was retention-entropy, which advances a lower bound for the lifespace penalty suffered by knowledge due to a 
retention-time interval change or time-dislocation. Novel concepts of particular interest that have surfaced are those of 
fix and weavelength which are the retention duals of frequency and wavelength, respectively, in motion. These new 
concepts are of primary interest since they are expected to play a role in recognition systems that emulate that of 
frequency and wavelength in the study, design, and implementation of modern communication systems. Clearly since 
the laws of retention is one of the two pillars of the newly discovered space-time duality in physics they promise to have 
general applicability and also to propel us towards a better understanding of our physical world. Such duality may 
conceivably address in a rather straight forward manner relevant theoretical questions in physics such as the 
development of a satisfactory quantum gravity theory as well as the advancement of more reliable predictions about 
future technology. It is also hoped that in the more general context of LIT, from which it inherently surfaced, the newly 
discovered space-time duality in physics can serve as a valuable pedagogical tool for superior investigations and 
guidance of existing and/or to be designed and implemented complex systems. 
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APPENDIX A 
On the Derivation of the Pace of Dark from UNBH Conditions 

 
 The derivation begins with a black hole’s power radiation expression 

M

M
BH
M

M
M

M
BH
M

M
BH

M dt
tdmc

dt
tdEtP )()()( 2−=−=                                            (A.1) 

where )( M
BH

M tP is the power radiation (the subscript of M for ‘motion’ will be used with physical variables that are 
normally used in the laws of motion in physics definitions [1], [6] while the subscript R for ‘retention’ will be used with 
physical variables that are defined for the laws of retention in physics of this paper) and )( M

BH
M tE and )( M

BH
M tm  are 
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the energy and mass of a UNBH [6] at the instant of time tM. )( M
BH

M tP is then noted to be equal to a ‘black body’ 

luminance )( M
BH
M tL resulting in the expression 

( )42342 )()60/()()( M
BH
MRMMMM

BH
MM

BH
M tAcktLtP Γ== hπ                                   (A.2) 

where kM is Boltzmann’s constant, Mh is Plank’s reduced constant, cM is the speed of light and )( M
BH
M tΓ  is the 

temperature of a UNBH: the radiation frequency of the black body, or equivalently Hawking’s radiation frequency 
)( M

H
M tf  for a black hole, is related to )( M

BH
M tΓ  via the expression MM

BH
MMM

H
M tktf h2/)()( Γ= . In addition, AR is the 

surface of the UNBH retention sphere. Next it is noted that )( M
BH
M tΓ  is given by the reciprocal of the rate of change of 

the UNBH thermodynamic entropy )( M
BH
M tS  with respect to )( M

BH
M tE  where the )( M

BH
M tS  is given by the 

Hawking entropy [6]. Thus 
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Next using Schwarzschild’s radius in the expression for AR in (A.4) and then replacing )( M
BH
M tm  with its energy 

equivalence one obtains the following expression for )( M
BH
M tS  as a function of )( M
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Next using (A.5) in the evaluation of (A.3) one finds 
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Using (A.6) in (A.2) and equating the result with (A.1) the following nonlinear differential equation is derived 
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The solution to this differential equation then yields the following analytical result 
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where )( i
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M tm  is the initial UNBH mass. One then sets expression (A.8) to zero to find the final time f

Mt when the 
black hole ends its existence, i.e., 
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where rR and VR are the retention radius and volume, respectively, of the  UNBH at the initial time of i
Mt . The expected 

retention-time TR for the UNBH is then given by the expression 
                                                     i

MRMMM
i
M
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MR tVGcttT −=−= )480( /

2 h                                                (A.10) 
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The rate of change of expected retention-time TR with respect to the retention-space VR is then derived from (A.10) to 
give us the sought after pace of dark cR for a UNBH, i.e., 

R
i
MRMMMRRR VtTGcdVdTc /)(480/ /

2 +=== h .                                  (A.12) 
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Table 1.  A) Newton’s Principia; B) The Retention-Principia 
A B 

tM: motion-time (or lifetime) in sec units SR: retention-space (or lifespace) in meter3 units 
sM: motion-space in meter units TR: retention-time in sec units 

vM: motion-velocity in meters/sec units vR: retention-tempo in sec/meter3 units 
bM: motion-speed in meters/sec units bR: retention-pace in sec/meter3 units 

aM: motion-acceleration in meters/sec2 units aR: retention-escalation in sec/meter6 units 
mM: motion-mass in kg units mR: retention-mater in kgR=Joule.meter3/sec units 

pM: motion-momentum in Newtons.secs units pR: retention-energy in Joule units 
fM: motion-force in Newtons units fR: retention-pressure in Pascal units 

KEM: kinetic motion-energy in Joule units KER: kinetic retention-viscosity in Viscosity units 
WM: motion-work in Joule units WR: retention-effort in Viscosity units 

MMM dtdsv /=  RRR dSdTv /=  

MM vb =  RR vb =  

MMM dtdva /=  RRR dSdva /=  

MMM vmp =  RRR vmp =  

MMM dtdpf /=  RRR dSdpf /=  

MMM mpKE 2/2=  RRR mpKE 2/2=  

M

s

s MMM dssfW M

M
∫=

2

1
)(  R

T

T RRR dTTfW R

R
∫=

2

1
)(  

 
 
 
 
 

Table 2.  A) Additional Motion Terminology; B) Retention Space Dual Terminology 
A B 

Motion-Gravitational Retention-Gravidness 
Motion-Electrical Retention-Exalted 
Motion-Heaviside Retention-Hefty 
Motion-Magnetic Retention-Mesmeric 
Motion-Frequency Retention-Fix 

Motion-Wave Retention-Weave 
Motion-Wavelength Retention-Weavelength 

Motion-Particle Retention-Pellet 
Motion-Radiation Retention-Ramification 

Motion-Photon Retention-Portage 
Motion-Graviton Retention-Gravid 
Motion-Charge Retention-Clog 
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Fig. 1 The Recognition/Communication System in Latency-Information Theory 

 

 
                        Fig. 2 A-D) The Motion-Principia Model; E-H) The Retention-Principia Model 
 

 
                               Fig. 3 A-C) Motion Special Relativity; D-F) Retention Special Relativity 
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                     Fig. 4 A-D) The Motion-Gravitational Law; E-H) The Retention-Gravidness Law 
 
 
 
 

 
                           Fig. 5 A-D) The Motion-Electrical Law; E-H) The Retention-Exalted Law 
 
 
 
 

 
                          Fig. 6 A-B) The Motion Wave-Particle Duality; C-D) The Retention Weave-Pellet Duality; 
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                                     Fig. 7 A) Motion Quantum Mechanics; B) Motion Uncertainty Principle;                               
                                               C) Retention Quantum Mechanics; D) Retention Uncertainty Principle 
 
 
 
 
 

 
                   Fig. 8 A) Motion Relativistic Quantum Mechanics; B) Retention Relativistic Quantum Mechanics 
 
 
 
 
 

 
                            Fig. 9 A-D) The Motion-Heaviside Law; E-H) The Retention-Hefty Law 
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                            Fig. 10 A-D) The Motion-Magnetic Law; E-H) The Retention-Mesmeric Law 
 
 
 

 
               Fig. 11  A)  The Motion-Gravitoheaviside Equations; B) The Motion-Electromagnetic Equations; 
                             C)  The Retention -Gravidhefty Equations; D) The Retention-Exaltmesmeric Equations 

 
 
 

 
                        Fig. 12  A) The Motion-Gravitoheaviside Waves; B) The Motion-Electromagnetic Waves;  

C) The Retention-Gravidhefty Weaves; D) The Retention Exaltmesmeric Weaves 
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