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ABSTRACT 
 
In this second of a multi-paper series latency-information theory (LIT), the integration of information theory 
with its time dual, i.e., latency theory, is successfully applied to DARPA’s knowledge aided sensor signal 
processing expert reasoning (KASSPER) program. LIT encapsulates the concept of the time dual of a lossy 
source coder, i.e., a lossy processor coder. A lossy processor coder is a replacement for a signal-processor. 
This lossy processor coder is faster, simpler to implement, and yields a better performance than the original 
signal-processor when the processor input appears in a highly compressed-decompressed lossy fashion. In 
particular, a lossy clutter covariance processor (CCP) architecture is investigated that has successfully 
replaced KASSPER’s originally advanced lossless CCP and enabled its SAR imagery prior knowledge to be 
highly compressed-decompressed. This result is illustrated with a typical SAR image which is compressed-
decompressed by a factor 8,172. Using this image and under severely taxing environmental disturbances 
outstanding detections are achieved with the lossy CCP. Furthermore, this result is derived with a lossy CCP 
that is at least five orders of magnitude faster and significantly simpler to implement than the corresponding 
lossless CCP whose SINR detection performance is nevertheless unsatisfactory. As a final comment it is also 
observed that LIT illuminates biological system studies since it provides a lossy mechanism that explains how 
outstanding detections may be arrived at by biological systems that use highly lossy compressed prior 
knowledge, e.g., when a human expertly detects a face seen only once before even though that face cannot be 
accurately described prior to such new viewing. 
 
Keywords: space-time dual, time dual, latency, latency theory, information, latency-information theory, 
sourced-space, motion-time, processing-time, retention-space, bits, bors, lossy processor, processor ectropy, 
source entropy, sensor consciousness, channel capacity, knowledge aided, radar, intelligent system, DARPA, 
KASSPER, biology 
 

1. INTRODUCTION 
 

As stated in the first of this multi-paper series [6], and I quote,  
“A real-world problem whose high performance is attributed to its use of an intelligent system (IS) is 

knowledge-aided (KA) airborne moving target indicator (AMTI) radar such as found in DARPA’s knowledge 
aided sensory signal processing expert reasoning (KASSPER) [1]-[2] program. The IS’s intelligence, or prior 
knowledge, is clutter synthetic aperture radar (SAR) imagery and its intelligence processor (IP), or on-line 
computer, is the associated clutter covariance processor. Unfortunately, however, the excellent signal to 
interference plus noise ratio (SINR) radar performance achieved directly depends  on  satisfying prohibitively  
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expensive storage and computational requirements. The former ‘storage’ problem is easily addressed by using 
a highly efficient lossy source coding technique, e.g., a minimum mean squared error (MMSE) predictive-
transform (PT) source coder [3] that compresses a typical SAR image by several orders of magnitude: a 
MMSE PT source coder is used rather than the JPEG2000 standard [4] since the PT coder outperforms JPEG 
by at least 5dB in this application [5]. Yet, a lossy source coder compressor seriously compromises the SINR 
radar performance. Thus one seeks the replacement of the clutter covariance processor with a processor that is 
better matched to highly compressed SAR imagery.” 
 

In this second of a multi-paper series a replacement for a clutter covariance processor (CCP) is advanced 
using as a guide latency theory, the discovered time dual for information theory [6]. In particular, latency 
theory and information theory are unified to form a latency-information theory (LIT) which encapsulates the 
concept of a lossy processor [6]. A lossy processor is a processor that may be better matched to a highly lossy 
version of a lossless signal-processor’s input than the lossless signal-processor itself. More specifically for 
our radar application, a lossy CCP architecture is investigated that replaces the lossless CCP, or intelligent 
system, and enables its input SAR imagery prior knowledge to appear in highly compressed lossy form. This 
result is illustrated with a typical SAR image that has been compressed by a factor of 8,172. Using this image 
and under severely taxing environmental disturbances outstanding detections are achieved with the lossy 
CCP. Furthermore, this occurs while the lossy CCP is at least five orders of magnitude faster and much 
simpler to implement than the corresponding lossless CCP whose SINR detection performance is 
unsatisfactory when its input appears highly compressed-decompressed. As part of the interpretation of these 
results it is also observed that LIT illuminates biological system studies since it provides a lossy mechanism 
that explains how outstanding detections may be arrived at by biological systems that use highly lossy 
compressed prior knowledge, e.g., when a human expertly detects a face seen only once before even though 
that face cannot be accurately described prior to such new viewing. 
 

The paper begins with a succinct overview of latency-information theory. This theory combines the 
communication system in information theory with the recognition system in latency theory in a single system. 
The paper continues with a discussion of the CCP used in KASSPER’s knowledge aided AMTI radar system. 
The paper then discusses the advanced lossy CCP and shows some simulation results.  
 

2. LATENCY-INFORMATION THEORY 
 

Refer to Fig. 1 where a recognition system is combined with a communication system to yield a 
recognition-communication system. In [6] a detailed description is given of the communication system and 
recognition system subsystems appearing in this figure. Nevertheless a succinct summary of these subsystems 
is advanced next. While a communication system is composed of a channel, source-coder, channel-coder and 
motion-coder, the time dual of a communication system, i.e., a recognition system, is composed of a sensor, 
processor-coder, sensor-coder and retention-coder. A channel is the medium through which knowledge must 
be space dislocated. A source-coder (encoder/decoder) replaces an inefficient signal-source with one yielding 
a smaller sourced-space penalty in binary digits (bits) units. A channel-coder identifies the necessary 
overhead-knowledge for a more accurate transmission of the sourced-space. A motion-coder is a 
transmitter/receiver device that space-dislocates (or moves) knowledge with the smallest motion-time possible 
[7]. A recognition system, as defined in [6], uses prior-knowledge about a signal-processor’s input to enable 
the sensing of its output by a processing-time limited sensor when the fastest possible signal-processor 
replacement cannot achieve this task. A sensor is the time dual of a channel and motivates the required time-
dislocation of the processing-time to an earlier time via the use of prior-knowledge. The processor-coder is 
the time dual of the source-coder and replaces the signal-processor with one yielding a smaller processing-
time penalty in binary operators (bors) units. The sensor coder is the time dual of the channel-coder and its 
purpose  is  to  identify  the  necessary  prior-knowledge  for  an  earlier  beginning  of  the processing-time. A  

 
 
 

Proc. of SPIE Vol. 6982  698211-2



 

retention-coder is a write/read device that time-dislocates (or retains) knowledge with the smallest retention-
space possible [7]. Information-theory uses the sourced-space performance bound penalties of source-entropy 
H and channel-capacity C to guide the design of channel and source integrated (CSI) coders. On the other 
hand, latency-theory uses the processing-time performance bound penalties of processor-ectropy K and 
sensor-consciousness F to guide the design of sensor and processor integrated (SPI) coders. While the 
bounds H and C are ruled by the uncertainty associated with the passing of time, the bounds K and F are 
ruled by the certainty associated with the configuration of space. Finally, the laws of physics are used in the 
design of motion-coders and retention-coders. While the laws of motion are used in the design of motion-
coders, in the third of this multi-paper series [7] a space dual for the laws of motion is discovered, therein 
named the laws of retention, that directly addresses the design of retention-coders. In [7] in the same spirit as 
for information theory and its time dual latency theory, a motion-ectropy A performance bound in second 
units is defined for the design of motion-coders and a retention-entropy N performance bound in cubic meters 
is defined for the design of retention-coders. Furthermore, while the motion-ectropy A is ruled by the 
certainty associated with the configuration of space, the retention-entropy N is ruled by the uncertainty 
associated with the passing of time. 

 
In this paper the discussion will be limited to the use of the source-entropy H and the processor-ectropy 

K to guide us in the evaluation of the performance of the advanced lossy CCP. Hence we will only define 
these two measures of performance next for ease of reference.  

 
The source-entropy H is defined by 

][][
1

iS

U

i
i oIoP∑

=

=H     in bits per { }Uoo ,...,1∈X                                  (2.1) 

where X is a source output discrete random variable with U outcomes {oi}, IS[oi] is the source-information 
advanced by the source outcome oi and given by  

   ])[/1(log)( 2 iiS oPoI =  in bits per oi                                                 (2.2) 
with the probability P[oi] being a measure of oi‘s uncertainty, which is in turn driven by the passing of time 
[8]. A source-coder’s design is then approached using H as a performance bound. In particular, the source 
coder rate RSE in bits per X units reflects a sourced-space penalty incurred by the source coder. Thus when 
RSE is greater than or equal to the source-entropy H and less than or equal to the source rate RS, i.e., 

SSE RR ≤≤H                                                                  (2.3) 
we say that the source coder is lossless and when RSE is smaller than H we say that the source coder is lossy. 
 

On the other hand, the processor-ectropy K—the time dual of the source-entropy H—is defined by 
                                      K = max(LP(y1),..,LP(yJ))   in bors per [ ]Jyy ,...,1=y                                       (2.4) 

where y is a processor vector output with J elements {yi}, LP[yi] is the processor-latency of yi which is 
defined as the minimum processing-time that is needed to obtain yi after the original signal processor is 
redesigned subject to implementation processor constraints {C[yi]} [6]. Thus  
 

                                 L(yi) = f(C[yi])   in bors per yi                                                       (2.5) 
 

with f(C[yi]) indicating that L(yi) is a function of C[yi]. The constraint C[yi] is the time dual of probability 
P[oi] and is driven by a configuration of space certainty, e.g., the ‘certain’ occupancy-space in m3 occupied 
by NAND gates. The design of a processor-coder is then approached using K as a performance bound. A 
lossless processor-coder is the time-dual of a lossless source-coder. It has a RPC achievable, i.e., 

 
 PPC RR ≤≤K                                                                  (2.6) 
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It is also ideal when RPC=K and is equivalent to the signal processor when RPC=RP. A lossy processor-coder is 
the time-dual of a lossy source-coder. It has a RPC that is not achievable, i.e., 
 

 K<≤ PCR0                                                                  (2.7) 
 
but is faster and simpler to implement than a lossless one. 

 
3. KASSPER’S KNOWLEDGE AIDED CLUTTER COVARIANCE PROCESSOR 

 
KASSPER’s knowledge aided CCP is found inside the AMTI of the radar system of Fig. 2. An array of N 

antenna elements radiates M consecutive pulses during a coherent-pulse-interval (CPI). These pulses are 
echoed back at some distance away, more than a thousand meters, from a front clutter range-bin. The range-
bin is composed of an even number of cells NC where the boundary line between cells NC/2 and (NC+2)/2 is 
investigated to determine if a moving target appears there. When NC is large, say 256, cell 1 and cell NC have 
a bore-sight angle θ of approximately -90o and 90o, respectively, i.e., θ (1) ≈ -90o  and θ (NC) ≈ 90o. 
Furthermore, the antenna-gains {gi} associated with these cells are found from 
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where θ  (K=(NC+1)/2) = 0o, d is the antenna inter-element spacing, λ is the operating-wavelength, and  
fG is 

the global front antenna-gain [9].  
 

The prior-knowledge (or intelligence) system embedded in the AMTI consists of a prior-knowledge 
signal source in cascade with a CCP. The prior-knowledge source contains clutter range-bins in the form of 
SAR-imagery. In Fig. 3A a typical 4 Megabytes SAR image is shown. Since the prior-knowledge storage 
needs are overwhelming in a real-world scenario [1]-[2], a key practical problem is the design of a highly 
lossy but useful source coder for its replacement such as a MMSE PT source coder [5]. Fig. 3B displays the 
compressed-decompressed image that is derived when a MMSE PT source coder compresses the image of 
Fig. 3A by a factor of 8,172. The CCP, on the other hand, evaluates on-line the 2562 complex elements of 
clutter covariance matrix 

∑
=

=
C

f
N

gx
1i

H
iiii ccCC                                                           (3.2) 

where: a) x=[x1,…,xNc]∈RN c is the real clutter source power vector; b) g=[g1,…,gNc]∈RNc is the real antenna 
gain vector; c) ci∈CNM is the complex steering column vector of the i-th range-bin cell; and d) H

ic is the 
transposed and complex conjugate of ci. 

In turn, f

cC is then used to derive the weighting vector w∈CNM that multiplies the AMTI-vector-input 
z(ti)+s(ti) where z(ti)∈CNM is an interference plus noise vector and s(ti)∈CNM is the moving-target steering-
vector. This multiplication yields  

y(ti+Tw)=w(ti+Tw)H(z(ti)+s(ti))                                                     (3.3) 
or 

y(ti+Tw)=w(ti+Tw)Hz(ti)                                                          (3.4) 
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depending on whether the moving target is present or not, respectively. Tw is the processing-time used by the 
AMTI to evaluate w. The AMTI decides on the basis of the magnitude of its complex scalar output y(ti+Tw), 
which of the two outputs, i.e., (3.3) or (3.4), is the one more likely to have occurred.  

The expression relating w to f

cC is 
w=C -1s                                                                      (3.5) 

where C is the covariance of z, i.e., C=E[zzH]. Expression (3.5) results from the maximization of the signal to 
interference-plus-noise ratio (SINR) 

SINR=wHssHw/ wHCw                                                         (3.6) 
where wHssHw is the power of the signal, s, part of (3.3) and wHCw is the power of the interference-plus-noise, 
z, part of (3.3). To model C in a real-world scenario a covariance matrix tapers (CMTs) formulation [9] is 
used  

C = {( f

cC + b

cC )O(C RW+C ICM+C CM)}+{C JOC CM}+C n                                      (3.7) 
where b

cC , C n, C J, C RW, C ICM, and C CM are NMxNM dimensional covariance complex matrices and the symbol 
O denotes a Hadamard product or element by element multiplication. These covariances correspond to: b

cC to 
back-clutter; Cn to thermal-white-noise; CJ to jammer; CRW to range-walk; CICM to internal-clutter-motion; and 
CCM to channel-mismatch. The covariances CRW, CICM, and CCM are called CMTs. Since the on-line computation 
burden of C is mostly due to f

cC (3.2) and taxes heavily the available computational resources, the signal-
processor evaluating (3.2) must then be replaced with the fastest possible processor, either lossless or lossy, 
that can also handle highly compressed prior-knowledge (Fig. 3B). This problem is thus one of designing a 
new processor that compresses the processing-time of a signal-processor with its output either being the same 
as that of the original signal-processor (the lossless case) or different (the lossy case).  
 

4. A NOVEL CLUTTER COVARIANCE PROCESSOR ARCHITECTURE 
 

A novel lossy CCP coder architecture is now advanced (see Fig. 4) for replacement of the lossless front 
clutter covariance matrix f

cC (3.2) and its effectiveness demonstrated while in the presence of severely taxing 
environmental disturbances. This highly lossy power-centroid CCP coder has a sensor coder in cascade with a 
source coder providing a highly lossy prior knowledge input. The main task of the sensor coder is to advance 
as prior knowledge range bins obtained from a SAR image. Each range bin consists of 16 averaged 
consecutive rows of a SAR image (see Fig. 3) from which the front clutter source power vector input 
x=[x1,…,xNc] is derived. The source coder, on the other hand, is a highly lossy MMSE PT source coder [5] 
that, for instance, generates Fig. 3B for a compression factor of 8,172. 

 
The lossy power centroid processor coder consists of a power centroid extractor (PCE) in cascade with a 

predicted clutter covariance (PCC) selector. The PCE derives from the front range-bin clutter power vector 
                                             ][ 2211 CC NN gxgxgx L=xOg                                            (4.1) 

its power P(xOg) and centroid C(xOg) thus 
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The PCC-selector, on the other hand, quantizes the P(xOg) and C(xOg) as follows 
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DQCQCNQCDQCQC C +=+=−= 23221        ,2/)1(       ,                          (4.7) 
where QPi and QCi are quantization levels for P(xOg) and C(xOg), respectively. PMax, PMin, and D are found 
making use of the prior-knowledge (Fig. 3B) and the antenna gain (3.1) with θ(K=(NC+1)/2)=0o. The 
resultant quantization levels are then used to select from a memory device one of six PCCs. The PCCs are 
derived off-line from  
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From expressions (4.8) and (4.9) it is noted that PCCk,j is a function of kQP  and the gains { ))(( ji QCKg =θ } 
(3.1) (these gains match the antenna-pattern of Fig. 2 when j=2). The on-line processing-time of the lossy 
power/centroid processor coder is mostly due to the PCE of (4.2) and (4.3).  
 

A comparison of (4.2) and (4.3) with (3.2) reveals that the lossy power/centroid processor-coder 
improves by several orders of magnitude the processing-time and implementation complexity needed for the 
evaluation of (3.2) since (3.2) requires xi to be multiplied by the gi weighted 256x256 complex steering 

matrix
H

ii ccig while (4.2) and (4.3) do not. Thus a factor of 2x2562=131,072 on-line processing-time saving is 
derived, as well as a significantly reduced implementation complexity.  In this comparison it has been 
assumed that (3.2) is evaluated using an ideal lossless processor-coder satisfying three on-line computational 
constraints (clearly other constraints can be used depending on the available computational resources). They 

are: 1) the NC=256 complex matrices {
H

ii ccii gx } appearing in (3.2) are simultaneously evaluated by 256 
sub-processors; 2) the aforementioned 2x2562=131,072 basic multiplications associated with each complex 

matrix 
H

ii ccii gx  are performed by a sub-processor in a sequential fashion; and 3) the sum of the 256 matrices 

{
H

ii ccii gx } leading to
f

CC  is implemented with 255 matrix additions. Thus the ectropy K exhibited by this 

ideal lossless processor-coder is given by K = 131,072bM + 255bA bors/
f

CC where bM is the number of bors 
per multiplication and bA is the number of bors per addition. It should be noted that when finding the previous 

expression for K it was both assumed that the latency associated with each complex scalar element of
f

CC is 
the same and any time-delays introduced by memory read/write operations are reflected in the bM and bA 
values. Furthermore, since the number of additions leading to K is significantly smaller than the number of 
multiplications  and  it  is  also  assumed  that  bM>>bA  it  follows  that  K can be approximated by 131,072bM  
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bors/
f

CC . On the other hand, the evaluation of the lossy power-centroid processor-coder output 
f

CĈ  of Fig. 4 

leads to an approximate processor-coder rate RPC of bM bors/
f

CĈ  where the availability of appropriate 
parallel-processing computational resources was assumed. Thus an estimated on-line processing-time 
improvement of K/RPC = 131,072 results from the use of our lossy processor-coder.  

 
5. SIMULATION RESULTS 

 
The SINR radar performance derived with the lossy power centroid processor coder is investigated 

next making use of the radar parameters of Table 1 [9]-[10]. Also 64 simulation range-bins, each 256 
dimensional, are derived from Fig. 3A and Fig. 3B by averaging 16 adjacent-rows. For each range-bin the 
SINR is determined for normalized Doppler from -1/2 to 1/2 where the Doppler-sign conveys the direction of 
the moving target with respect to the AMTI-platform and its magnitude informs us about the relative speed of 
the moving target with respect to that of the AMTI-platform. In Fig. 5A SINR versus normalized Doppler 
plots are given for three cases. The first case is the optimum SINR performance plot that results when (3.2) 
and range-bin #1 of Fig. 3A are used. The second and third cases make use of range-bin #1 from Fig. 3B. An 
average SINR error (ASE) of 1.04 dBs is derived when using the lossy power centroid processor coder of Fig. 
4 and an ASE=4.8-dBs when the lossless (3.2) is evaluated. In Fig. 5B the ASE is plotted versus range-bin 
number for both the lossless and lossy processor cases where an average ASE improvement of more than 4.5 
dBs is achieved when using the lossy power centroid processor coder of Fig. 4. Finally, it is noted, that the 
lossy processor coder of section 4 can be augmented with the channel coder of Fig. 1 when highly-
compressed prior-knowledge is stored in a central-command station and then transmitted to an AMTI [1,2].  

 

6.  CONCLUSIONS 
 

The principal revelation of this paper is that information-theory and its discovered time-dual, latency-
theory can be unified to form a latency-information theory (LIT) that guides system design as was 
successfully illustrated in this paper. In addition, LIT can be viewed as a mathematical theory of prior-
knowledge (or intelligence) that supervises efficient prior-knowledge (or integrated recognition/ 
communication) system designs. A highly desirable result surfaced when real-world knowledge-aided radar 
operating with highly-compressed prior-knowledge only yielded fast and outstanding detections if a lossy 
processor replaced a slower and more complex lossless one. This was the case because the advanced lossy 
processor coder was significantly better matched to the lossy prior knowledge than the lossless processor 
coder. This result is enlightening from an engineering perspective and is also consistent with the performance 
of biological systems that produce swift and excellent detections while in the presence of a highly compressed 
prior-knowledge environment. For instance, such is the case when a human after a new viewing expertly 
detects a human face seen only once before, even though that face cannot be accurately described prior to 
such new viewing [11]. The reader is finally encouraged to refer to the first and third of this multi-paper 
series [6]-[7] for more discussions on LIT. 
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Table 1  Simulation Parameters 
 

a. Antenna N = 16, M = 16, d/λ = ½, fr = 103 Hz, fc = 109 Hz,  
Kf

 = 4x105 or 56 dBs, Kb
 = 10-4 or -40 dBs,  

b. Clutter Nc = 256, β = 1, 41 dBs < 10log10CNRf < 75 dBs,  
2
,icb

σ = 1 for all i, 10log10CNRb = -40 dBs, 

c. Target 
tθ = 0o 

d. Antenna Disturbance 2
nσ = 1, AAMθ = 2o 

e. Range Walk  ρ = 0.999999 
f. Internal Clutter Motion b = 5.7, 15=ω  mph 
g. Narrowband CM 

iε =0 for all i,  iγ  for all i fluctuates with a 5o rms 
h. Finite Bandwidth CM ε∆ = 0.001, φ∆ = 0.1o 
i. Angle Dependent CM B = 108 Hz, θ∆ = 28.6o 
j. Sample Matrix Inverse  Lsmi = 8x64=512, 102

=diagσ  
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                    Fig. 1 Latency-Information Theory’s Recognition/Communication System 
 
 

               
                               Fig. 2   Airborne Moving Target Indicator Radar System 
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            Fig. 3  A) 4 Megabytes SAR Image of Mojave Airport in California 
                       B) 512 Bytes  SAR Image Encoded/Decoded With a MMSE PT Source Coder 
 
 
 

 
                                   Fig. 4 Lossy Power-Centroid Clutter Covariance Processor 
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                                  Fig. 5   A) SINR versus normalized Doppler for range bin #1 
                                                  B) Average SINR error versus range bin number 
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