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ABSTRACT

The memory space compression of a predictive-transform (PT) source coder is found to remain outstanding when the
guantized coefficient errors emanating from its ‘lossy’ PT source encoder section are encoded using a novd, fast, and
simple hit planes methodology. The advanced technique outperforms waveets based JPEG2000 by more than 5 dBs
when it compresses by a factor of 8,192 a test 4 megabytes (MB) synthetic aperture radar (SAR) image used in
knowledge-aided airborne moving target indicator (AMTI) radar.
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1. INTRODUCTION

The theory and practice of source coding has arenowned recent history and is an enabling technology for what is known
today as the information revolution [1]. Source coding deals with the memory space compression of signals emanating
from a signal source. Each of the possible signal source output outcomes conveys some amount of information which is
measured by the logarithm of the reciprocal of the probability of the outcome. As aresult an unlikely outcome provides a
large amount of information while one that often occurs does not. When the logarithm has base two the information is
given in units of bits. The expected outcome information is called the signa source entropy and is given in units of bits
per outcome. This entropy is often significantly smaller than the signal source rate and can then be used as a guide in
designing a source coder. A fundamental problem in source coding is then to find a replacement for the signal source,
called a source coder, characterized by a rate that emulates the signal source entropy. This type of source coder is
‘lossless’ since its output is the same as that of the signa source such as is the case with Huffman, Entropy, and
Arithmetic coders. Another essentia problem in source coding pertains to the design of lossy source coders that achieve
rates that are significantly smaller than the signa source entropy. These solutions are linked to applications where the
local signal to noise ratio (SNR) of the source coder does not have to be infinite or alternately the global performance
criterion of the application a hand is not the local SNR. An example of the last case is when synthetic aperture radar
(SAR) imagery is compressed for use in knowledge-aided (KA) airborne moving target indicator (AMTI) radar [2]. To
address the ‘lossy’ source coding problem many techniques have been developed including the standards of JPEG,
MPEG, wavelets based JPEG2000 [3], and predictive-transform (PT) source coding [4]. In this paper it will be shown
that a very fast and simple bit planes based PT source coder significantly outperforms wavel ets based JPEG2000 when
applied to SAR imagery.

PT source coding naturally arises from the unification of predictive source coding with transform source
coding with the goal of trading off the implementation simplicity of a predictive source coder with the high speed of a

This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under the KASSPER Program
Grant No. FA8750-04-1-004.

Mobile Multimedia/lmage Processing for Military and Security Applications, edited by Sos S. Agaian,
Sabah A. Jassim, Proc. of SPIE Vol. 6250, 625004, (2006) - 0277-786X/06/$15 - doi: 10.1117/12.666154

Proc. of SPIE Vol. 6250 625004-1



transform coder. This unification is characterized by a source coder architecture with ‘fixed’ prediction and
transformation matrices that are derived ‘off-line€ from coupled Wiener-Hopf and eigensystem design equations using
stationary signal statistics [5]. These design equations result when a mean squared error (MSE) criterion subjected to
appropriate quantizer constraints is minimized with respect to the prediction and transformation matrices. Furthermore it
has been determined [5] that simplifying decomposed PT structures arise when signals are symmetrically processed. A
strip processor, used later to illustrate the scheme developed in this paper, is an example of such processing. Also
cascaded Hadamard structures [4] have been integrated with PT structures to accelerate the on-line evaluation of the
necessary products between the transform/ predictor matrix and a signa vector as well as the off-line evaluation of the
transform and predictor matrices from the coupled Wiener-Hopf and eigensystem design equations. In this paper, it will
be established that the excellent memory space compression achieved with PT source coding is not affected by its
integration with a very fast and simple bit planes methodology that operates on the quantized coefficient errors
emanating from the lossy PT encoder section. The efficacy of the approach will be illustrated by compressing by a factor
of 8,192 a test 4 megabytes (MB) SAR image used in KA-AMTI radar that is subjected to severely taxing environmental
disturbances. In particular it will be found that PT source coding with bit planes significantly outperforms wavelets
based JPEG2000 in terms of local SNR as well as global SINR radar performance.

The organization of this paper is as follow. Section Il provides the pre-requisite PT source coding background
material. In Section Il the proposed integration of PT source coding with bit planes is advanced. In Section IV
simulation results are shown for a rea-world application that clearly show that the advanced bit planes PT source coder
is superior to wavel ets based JPEG2000.

2. BACKGROUND

In Fig. 1 the global PT source coder architecture is shown. It has as its input the output of a signal source y. As an
illugtration this output will be assumed to be areal matrix representing 2-D images. The structure consists of two distinct
sections. In the upper section the lossy encoder and associated lossy decoder are depicted while in the lower section the
lossless encoder and decoder are shown. Before the lossless section of the coder is explained, which contains the
offered bit planes, the lossy section will be reviewed. In Fig. 2 the lossy PT encoder structure is shown. It consists of a
transform pre-processor f+(y) whose output x, isareal n dimensional column vector. In Fig. 3 an image coding example
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Fig. 2 Lossy PT Encoder Structure

is given where y is a matrix consisting of 64 real valued picture elements or pixels and the transform pre-processor
produces sixteen n=4 dimensional pixel vectors {xck=1,...,16}. The pixel vector x, then becomes the input of a nxn
dimensional unitary transform matrix T. The multiplication of the transform matrix T by the pixel vector x, produces an
n dimensional rea valued coefficient column vector ¢,. This coefficient, in turn, is predicted by a real n dimensional
vector C 1. The prediction vector € .1 is derived by multiplying the real m dimensional output z,; of a predictor pre-
processor (constructed using previoudy encoded pixel vectors as will be seen shortly), by a m x n dimensional red
prediction matrix P. A real n dimensional coefficient error ¢y is then formed and subsequently quantized yielding 8¢ «.
The quantizer has two assumed structures. One is an ‘analog’ structure that is used to derive analytical design
expressions for the P and T matrices and another is a ‘digital’ sructure used in actual compression applications. The
analog structure consists of allowing the most energetic e ements of 8¢y, say d of them, to pass to the quantizer output
unaffected and the remaining elementsto appear at the quantizer output as zero values, i.e.,
o [ () i=1..d

&k('):{ 0 i=d+l.n’ (21
The digital structure consists of multiplying dc, by a red and scalar compression factor ‘g’ and then finding the closest
integer representation for thisreal valued product, i.e.,

&, =| 9o, +1/2]. (2.2)
The quantizer output 8¢ isthen added to the prediction coefficient €1 toyield a coefficient estimate €. Although
other types of digital quantizers exist [1] the quantizer used here (2.2) is the simplest one to implement and yields
outstanding results as will be seen in our simulations. The coefficient estimate Cyx iS then multiplied by the
transformation matrix T to yield the pixel vector estimate x,,, - This estimate is then stored in a memory which contains

Proc. of SPIE Vol. 6250 625004-3



the last available estimate ¥ 1 of the pixel matrix y. Note that

171 ... 28 H - the initial value for ¥4, i.e, Yo, can be any reasonable

: HE— IR RO ] Pa— ye R% . . . . .

= Z9...215 = estimate for each pixd. For ingance, since the processing of

Trermeraeeaed the image is done in a sequential manner using prediction
feie Rk =115} from pixel block to pixel block, the initial ¥, can be

97 7 972 973 974 975 97 6 97 7 978
927 922 923 924 925 926‘ 927 928
937 932 933 934 935 936‘ 937 938
947 942 943 944 945 946‘ 947 948
957 952 953 954 955 956‘ 957 y58
96‘7 96‘2 96‘3 96‘4 96‘5 96‘6‘ 96‘7 ySB

constructed by assuming for each of its pixel estimates the
average value of the pixel block x;. Fig. 4 shows for the
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and P matrices of the PT source coder isreviewed.

)
Z.:.=|" ~
° Vi = X5 (3) The design equations for the T and P matrices are
Yor = Xis 15 (4) derived by minimizing the mean squared error expression
Fig. 4 Image Coding Illustration: Prediction Pre-Processing E[(X, =X, ) (X, = X, )] (233

with respect to T and P and subject to three congtraints. They are: 1) The elements of dc, are uncorrelated from each
other; 2) The elements of ¢ are zero mean; and 3) The analog quantizer of (2.1) is assumed. After this minimization is
performed the following coupled Wiener-Hopf and Eigensystem design equations are derived [5]:

P=[l, 03T, (2.4)

EXxexi]-[Elx 2] EXxJ1I} T=TA (25)
t 1 t

] {E[zk_ltz k_1] E[zk_l]} { E[z, X ) ]} 26)
Elz,] 0 E[x,]

where these expressions are a function of the first and second order statigtics of xx and zc, including their cross
corrdlation. To find these gatistics the following isotropic mode for the pixelsof y can be used [5]:

Ely, 1=K, (2.7)
E[(yij - K)(yi+v,j+h - K) = (Pavg - KZ)pD (28)
pP= E[(yij _K)(yi,j+1_K)]/(Pavg_K2) (2-9)

D =/(rv)* +h? (2.10)

wherev and h are integers, K is the average value of any pixel, Py iS the average power associated with each pixel, and
r is a constant that reflects the relative distance between two adjacent vertical and two adjacent horizonta pixels (r =1
when the vertical and horizontal distances are the same).

In Fig. 5 the lossy PT decoder is shown and is noted to be identical in structure to the feedback section of the

encoder section of Fig. 2. Next the losdess section of the PT source coder of Fig. 1 is discussed which contains the bit
planes methodol ogy advanced in this paper.
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3. BIT PLANES

The genera architecture of the offered lossless PT encoder is shown in Fig. 6 which has as input the digitally quantized
coefficient error sequence {6 ¢ k=1,..,Ng} where N is the total number of coefficient error vectors needed to encode
the 2-D imagey. The output of the lossless PT coder is the desired bit stream {b, € (0,1): j =12,.., N,} where N, isthe

number of bits generated by the losdess PT encoder prior to its further encoding using a lossless source coding scheme
such as an Arithmetic coder. The coefficient error sequence forms what is caled in the figure PT Blocks which is a
matrix of dimension n x Ng. In Fig. 7 an illustrative example is presented where n=6 and Ng =6. The most energetic
element of each quantized coefficient error isfound in thefirst row of PT Blocks, i.e., intherow {-300-11 2}, and the
least energetic one is found in the last row, i.e, therow {0 0 0 -1 0 O}. PT Blocks is then decomposed into
NZ_Amplitude_Locations and NZ_Amplitude Values. NZ_Amplitude Locations isan n x Ng dimensional matrix that
conveys information about the location of the nonzero (NZ) amplitudes found in PT Blocks. From the simple exampl e of
Fig. 7 it is noted that all nonzero elements of PT Blocks are replaced with a 1. NZ_Amplitude Values, on the other
hand, retainsthe actua NZ amplitude values. In Fig. 7 these amplitudes are shown for our illustrative example where it
isnoted that the number of elementsin each row isnot constant and a so that no elements are displayed corresponding to
the fourth row of PT Blocks since this row is made of zero values only. Returning to Fig. 6 it is noted that the
NZ_Amplitude_Locations matrix isnow split up into a Boundary matrix and a LocBitPlane block. The Boundary matrix
is associated with the location where the zero runs begin in the direction from top to bottom of each column of the
NZ_Amplitude_Locations matrix. LocBitPlane, on the other hand, are the bits that remain after thel's followed by
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+
MagBitPlane-X zero runs of the Boundary matrix are eiminated from the

NZ_Amplitude Locations matrix. In Fg. 8 this
decomposition is illugrated for the running example. Note
{b e(0):k=12...} <«— | that the nonzero Boundary matrix has three symbols. They
are 0, 1 and X. The symbol X is used for the elements of a
row whose values are all zero, thusit informs us about a zero
Fig. 6 Lossless PT Encoder row. The symbol 1 does not appear more than once for each
column and specifies a boundary location where the zero run
begins for that particular column. For example, since the zero run starts at row 4 for the first column, the 1 is placed on
the third row just prior to the beginning of the zero run. The aforementioned LocBitPlaneisdsoillustrated in Fig. 8. For
instance, note how for the third column only the bits {0 1 1} are listed and the zero for the fourth row is ignored since
thisinformation is available from the encoding of the Boundary matrix.

Once again returning to Fig. 6 it is now noted that the Boundary matrix is decomposed into three blocks. They
are the blocks ZeroRows, BndryBitPlane and RowOneOnes. This decomposition is best explained with the illustrative
example of Fig. 9. From this figure it is noted that ZeroRows assigns a 0 to a row of the Boundary matrix if it is
composed of the special symbol X, otherwise it assigns a 1 to the row. BndryBitPlane is the same as Boundary matrix
except that al rows made up of the special symbol X areremoved. In addition BndryBitPlane replaces a0 with a1 in the
first row of a column with a full zero run. See for example the second column of the Boundary matrix which has a full
zero run and for which a 1 has been placed on the first row of the column. Finally RowOneOnes keeps track of the ones
in the first row of BndryBitPlane that arose from replacing a O with a 1 as mentioned earlier. This completes the
encoding of the NZ_Amplitude Locations matrix of Fig. 6 into bit planes. Next the same is accomplished with the
NZ_Amplitude_Values block of Fig. 6 which wasillustrated in Fig. 7 with an example.
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From Fig. 6 it is noted that NZ_Amplitude Vaues is decomposed into two blocks. One is a Magnitude
block and the other isa SignsBitPlane block. The nature of these two blocksis surmised from Fig. 10 which continues
our running illustrative example. Note from this figure that the SignsBitPlane block assigns a zero to a negative integer
value and a one to a positive integer value. The Magnitude block is self explanatory. Returning for the last timeto Fig. 6
it is noted that the Magnitude block is decomposed into X MagBitPlane blocks. Each of these component blocks are
readily explained via the illugtrative example of Fig. 11. Itisfirg noted that since the maximum integer value for
the Magnitude block is 3 there will be 3-1=2 MagBitPlane blocks (it should be noted, however, that if the integer value 2
did not appear in the Magnitude block only one MagBitPlane block is needed with this information sent to the decoder
as overhead). MagBitPlane-1 isnoted from Fig. 11 to assign a 1 to the integer of magnitude 1 and a 0 to the other cases.
On the other hand, MagBitPlane-2 ignores all integers with a magnitude of one, and now assigns a 1 to the integers with
amagnitude of 2 and a 0 to the remaining integers. At this point one has the necessary stream of ones and zeros that can
then be appropriately encoded using a lossless encoder such as an Arithmetic encoder whose output is then sent to the
lossless PT decoder.

In Fig. 12 the lossless PT decoder is shown which receives as input the output of the lossless PT encoder (note
that it is assumed here that alossless decoder such as an Arithmetic decoder was appropriatel y used to derive thisinput).
The front part of the decoder constructs an n x Ng matrix, ZeroRows M, made up of either unity rows or zero rows
depending on the nature of the ZeroRows hits. In Fig. 13 this construction is illustrated with the running illustrative
example. Note that the ZeroRows hits that were derived in Fig. 9 are now used to construct a 6x6 matrix consisting of
either unity or zerorows. Next the ZeroRows M matrix isused in conjunction with the BndryBitPlane bitsto generate
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Fig. 15 lllugtrative Example: RowOneOnes M Construction

the n x Ng matrix BndryBitPlane M. This process is
illugrated in Fig. 14 with the running example. The next
step consists of using the derived BndryBitPlane M matrix
together with the RowOneOnes bits to derive a
RowOneOnes M matrix that is also of dimension n x Ng.
This process is illustrated once again in Fig. 15 with
our running example. Next the RowOneOnes M matrix is
combined with the LocBitPlane bhits to derived a
LocBitPlane M matrix of dimension n x Ng. In Fig. 16
this combination is shown for our illustrative example
where it is noted that the Loc Bit Plane M matrix is
identical to the NZ_Amplitude Locations matrix shown in
Fig. 7. This rather graightforward reconstruction procedure
is appropriately continued until the desired error sequence
{dCk k=1,.,Ng} is fully derived. In the next section the
proposed algorithm is applied to SAR imagery.

4. AREAL-WORLD APPLICATION

The efficacy of the previousy advanced bit planes PT
method is now demonstrated by comparing it with wavelets
based JPEG2000 in a real-world application. The
application congsts of compressing 4AMB SAR imagery by
afactor of 8,192 and then using the decompressed imagery
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Fig. 19 512 Bytes JPEG2000 Decompressed SAR

asthe input to the covariance processor coder of a KA-
AMTI radar system subjected to severdy taxing
environmental disturbances [6]. This SAR imagery is
a prior knowledge used in KA-AMTI radar to achieve
outstanding SINR radar performance [2].

The 4MB SAR image that will be tested is
given in Fig. 17 and is made up of 1024 rows for the
down range of 1,500 meters and 256 columns for the
cross range of 1,800 meters. The resolution clutter
source cell power depicted in thisfigureisin dBsand is
of the Mojave Airport in Cdifornia. This image was
compressed using a 16x1 strip processor that moves on
the image from left to right and top to bottom. In Fig.
18 the decompressed SAR image is shown that was
derived when the image was compressed by a factor of
8,192 using the PT source coder of this paper. The
NR, defined by

AR =10|0910[ZZ yijg /ZZ(yij - 9”’ )2] '

4.1
performance associated with this image is 12.5 dBs. In
Fig. 19 the corresponding decompressed image for
JPEG2000 is shown. The SNR performance for this
case yields a value of 7.0 dBs which ismore than 5 dBs
away from the PT approach. Finaly, the SINR radar
performance derived with JPEG2000 has been found to
be at least 2dBs worse than that reported in [6] when
using our bit planes PT source coding scheme.
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