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ABSTRACT 
 

The memory space compression of a predictive-transform (PT) source coder is found to remain outstanding when the 
quantized coefficient errors emanating from its ‘lossy’ PT source encoder section are encoded using a novel, fast, and 
simple bit planes methodology. The advanced technique outperforms wavelets based JPEG2000 by more than 5 dBs 
when it compresses by a factor of 8,192 a test 4 megabytes (MB) synthetic aperture radar (SAR) image used in 
knowledge-aided airborne moving target indicator (AMTI) radar. 
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1. INTRODUCTION 

 
The theory and practice of source coding has a renowned recent history and is an enabling technology for what is known 
today as the information revolution [1]. Source coding deals with the memory space compression of signals emanating 
from a signal source. Each of the possible signal source output outcomes conveys some amount of information which is 
measured by the logarithm of the reciprocal of the probability of the outcome. As a result an unlikely outcome provides a 
large amount of information while one that often occurs does not. When the logarithm has base two the information is 
given in units of bits. The expected outcome information is called the signal source entropy and is given in units of bits 
per outcome. This entropy is often significantly smaller than the signal source rate and can then be used as a guide in 
designing a source coder. A fundamental problem in source coding is then to find a replacement for the signal source, 
called a source coder, characterized by a rate that emulates the signal source entropy. This type of source coder is 
‘lossless’ since its output is the same as that of the signal source such as is the case with Huffman, Entropy, and 
Arithmetic coders. Another essential problem in source coding pertains to the design of lossy source coders that achieve 
rates that are significantly smaller than the signal source entropy. These solutions are linked to applications where the 
local signal to noise ratio (SNR) of the source coder does not have to be infinite or alternately the global performance 
criterion of the application at hand is not the local SNR. An example of the last case is when synthetic aperture radar 
(SAR) imagery is compressed for use in knowledge-aided (KA) airborne moving target indicator (AMTI) radar [2]. To 
address the ‘lossy’ source coding problem many techniques have been developed including the standards of JPEG, 
MPEG, wavelets based JPEG2000 [3], and predictive-transform (PT) source coding [4]. In this paper it will be shown 
that a very fast and simple bit planes based PT source coder significantly outperforms wavelets based JPEG2000 when 
applied to SAR imagery. 
 
 PT source coding naturally arises from the unification of predictive source coding with transform source   
coding with the goal of trading off the implementation simplicity of a predictive source coder with  the  high  speed  of  a  
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transform coder. This unification is characterized by a source coder architecture with ‘fixed’ prediction and 
transformation matrices that are derived ‘off-line’ from coupled Wiener-Hopf and eigensystem design equations using 
stationary signal statistics [5]. These design equations result when a mean squared error (MSE) criterion subjected to 
appropriate quantizer constraints is minimized with respect to the prediction and transformation matrices. Furthermore it 
has been determined [5] that simplifying decomposed PT structures arise when signals are symmetrically processed. A 
strip processor, used later to illustrate the scheme developed in this paper, is an example of such processing. Also 
cascaded Hadamard structures [4] have been integrated with PT structures to accelerate the on-line evaluation of the 
necessary products between the transform/ predictor matrix and a signal vector as well as the off-line evaluation of the 
transform and predictor matrices from the coupled Wiener-Hopf and eigensystem design equations. In this paper, it will 
be established that the excellent memory space compression achieved with PT source coding is not affected by its 
integration with a very fast and simple bit planes methodology that operates on the quantized coefficient errors 
emanating from the lossy PT encoder section. The efficacy of the approach will be illustrated by compressing by a factor 
of 8,192 a test 4 megabytes (MB) SAR image used in KA-AMTI radar that is subjected to severely taxing environmental 
disturbances. In particular it will be found that PT source coding with bit planes significantly outperforms wavelets 
based JPEG2000 in terms of local SNR as well as global SINR radar performance. 
 
 The organization of this paper is as follow. Section II provides the pre-requisite PT source coding background 
material. In Section III the proposed integration of PT source coding with bit planes is advanced. In Section IV 
simulation results are shown for a real-world application that clearly show that the advanced bit planes PT source coder 
is superior to wavelets based JPEG2000. 
 
 

2. BACKGROUND 
 
In Fig. 1 the global PT source coder architecture is shown. It has as its input the output of a signal source y. As an 
illustration this output will be assumed to be a real matrix representing 2-D images. The structure consists of two distinct 
sections. In the upper section the lossy encoder and associated lossy decoder are depicted while in the lower section the 
lossless  encoder and decoder  are shown.  Before the lossless section of the coder is explained, which contains the 
offered bit planes, the lossy section will be reviewed. In Fig. 2 the lossy PT encoder structure is shown. It consists of a 
transform pre-processor fT(y) whose output xk is a real n dimensional column vector.  In Fig. 3  an image coding example 
 
 

                                              
Fig. 1  The Global PT Source Coder Architecture 
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is given where y is a matrix consisting of 64 real valued picture elements or pixels and the transform pre-processor 
produces sixteen n=4 dimensional pixel vectors {xk:k=1,…,16}. The pixel vector xk then becomes the input of a nxn 
dimensional unitary transform matrix T. The multiplication of the transform matrix  T  by the pixel vector xk produces an 
n dimensional real valued coefficient column vector ck. This coefficient, in turn, is predicted by a real n dimensional 
vector ĉ k/k-1. The prediction vector ĉ k/k-1 is derived by multiplying the real m dimensional output zk-1 of a predictor pre-
processor (constructed using previously encoded pixel vectors as will be seen shortly), by a m x n dimensional real 
prediction matrix P. A real n dimensional coefficient error δck is then formed and subsequently quantized yielding δ ĉ k. 
The quantizer has two assumed structures. One is an ‘analog’ structure that is used to derive analytical design 
expressions for the P and T matrices and another is a ‘digital’ structure used in actual compression applications. The 
analog structure consists of allowing the  most energetic elements of δck, say d of them, to pass to the quantizer output 
unaffected and the remaining elements to appear at the quantizer output as zero values, i.e., 
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The digital structure consists of multiplying δck by a real and scalar compression factor ‘g’ and then finding the closest 
integer representation for this real valued product, i.e., 

⎣ ⎦2/1ˆ += kgk cc δδ .                                                   (2.2)  

The quantizer output δ ĉ k is then added to the prediction coefficient ĉ k/k-1 to yield  a  coefficient  estimate ĉ k/k.  Although 
other types of digital quantizers exist [1] the quantizer used here (2.2) is the simplest one to implement and yields 
outstanding results as will be seen in our simulations. The coefficient estimate ĉ k/k is then multiplied by the 
transformation matrix T to yield the pixel vector estimate kk /x̂ . This estimate is then stored in a memory which contains 
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the last available estimate ŷ k-1 of the pixel matrix y. Note that 

the initial value for  ŷ k-1, i.e., ŷ 0, can  be  any  reasonable  

estimate  for  each pixel. For instance, since the processing of  
the image is done in a sequential manner using prediction  
from  pixel  block  to  pixel block, the initial ŷ 0 can be 

constructed by assuming for each of its pixel estimates the 
average value of the pixel block x1. Fig. 4 shows for the 
illustrative example how the image estimate at processing 
stage k=16, i.e., ŷ k-1= ŷ 15, is used by the predictor pre-

processor to generate the pixel estimate predictor pre-
processor vector z15. Also note from the same figure how at 
stage k=16 the 4 scalar elements (ŷ57, ŷ67, ŷ77, ŷ87) of the 8x8 
pixel matrix ŷ 15 are updated making use of the most recently 

derived pixel vector estimate 15/15x̂ . Next the design of the T 

and P matrices of the PT source coder is reviewed. 
 
 The design equations for the T and P matrices are 
derived by minimizing the mean squared error expression 
                                 

 Fig. 4  Image Coding Illustration: Prediction Pre-Processing                              )]ˆ()ˆ[( // kkk
t

kkkE xxxx −−                     (2.3) 

 
with respect to T and P and subject to three constraints. They are: 1) The elements of δck are uncorrelated from each 
other;  2) The elements of δck are zero mean; and 3) The analog quantizer of (2.1) is assumed. After this minimization is 
performed the following coupled Wiener-Hopf and Eigensystem design equations are derived [5]: 

[ ] , 0 1  J TIP mxm=                                                        (2.4) 

{ } Λ=− T   T JEEE k
t
k-k

t
kk ]][x]z[x[]x[x 1                                    (2.5) 

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

][x

]x[z
1

0][z

][z]z[z
111

1

1

t
k

t
k-

t

k-
t

k-

E

E
 

-

E

EE
J k

k-

k-                                     (2.6) 

where these expressions are a function of the first and second order statistics of xk and zk-1 including their cross 
correlation.   To    find    these   statistics   the   following isotropic model for the pixels of y can be used [5]: 
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where v and h are integers, K is the average value of any pixel, Pavg is the average power associated with each pixel, and 
r is a constant that reflects the relative distance between two adjacent vertical and two adjacent horizontal pixels (r =1 
when the vertical and horizontal distances are the same). 
 
 In Fig. 5 the lossy PT decoder is shown and is noted to be identical in structure to the feedback section of the 
encoder section of Fig. 2. Next the lossless section of the PT source coder of Fig. 1 is discussed which contains the bit 
planes methodology advanced in this paper. 
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Fig. 5  Lossy PT Decoder 

 
 
 
 
 

3. BIT PLANES 

 
The general architecture of the offered lossless PT encoder is shown in Fig. 6 which has as input the digitally quantized 
coefficient error sequence {δ ĉ k: k=1,..,NB} where NB is the total number of coefficient error vectors needed to encode 
the 2-D image y. The output of the lossless PT coder is the desired bit stream },..,2,1:)1,0({ bj Njb =∈ where Nb is the 

number of bits generated by the lossless PT encoder prior to its further encoding using a lossless source coding scheme 
such as an Arithmetic coder. The coefficient error sequence forms what is called in the figure PT Blocks  which is a 
matrix of dimension n x NB. In Fig. 7 an illustrative example is presented where n=6 and NB =6. The  most energetic 
element of each quantized coefficient error is found in the first row of PT Blocks, i.e., in the row {-3 0 0 -1 1 2}, and the 
least energetic one is found in the last row, i.e., the row {0 0 0 -1 0 0}.  PT Blocks is then decomposed into 
NZ_Amplitude_Locations and NZ_Amplitude_Values. NZ_Amplitude_Locations is an n x NB dimensional matrix that 
conveys information about the location of the nonzero (NZ) amplitudes found in PT Blocks. From the simple example of 
Fig. 7 it is noted that all nonzero elements of  PT Blocks are replaced with a 1. NZ_Amplitude_Values, on the other   
hand, retains the actual NZ amplitude values. In Fig. 7 these amplitudes are shown for our illustrative example where it 
is noted that the number of elements in each row is not constant and also that no elements are displayed corresponding to 
the fourth row of PT Blocks since this row is made of zero values only. Returning to Fig. 6 it is noted that the 
NZ_Amplitude_Locations matrix is now split up into a Boundary matrix and a LocBitPlane block. The Boundary matrix 
is associated with the location where the zero runs begin in the direction from top to bottom of each column of the 
NZ_Amplitude_Locations matrix. LocBitPlane, on the other hand,  are  the  bits  that  remain  after  the 1’s  followed  by  
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 Fig. 7 Illustrative Example: PT Blocks Decomposition 

 
zero runs of the Boundary matrix are eliminated from the 
NZ_Amplitude_Locations matrix. In Fig. 8 this 
decomposition is illustrated for the running example. Note 
that the nonzero Boundary matrix has three symbols. They 
are 0, 1 and X. The symbol X is used for the elements of a 
row whose values are all zero, thus it informs us about a  zero 

                        Fig. 6 Lossless PT Encoder                               row. The  symbol  1 does  not appear more than once for each  
                                                                                               column and specifies a boundary location where the zero run 
begins for that particular column. For example, since the zero run starts at row 4 for the first column, the 1 is placed on 
the third row just prior to the beginning of the zero run. The aforementioned LocBitPlane is also illustrated in Fig. 8. For 
instance, note how for the third column only the bits {0 1 1} are listed and the zero for the fourth row is ignored since 
this information is available from the encoding of the Boundary matrix. 
 
  Once again returning to Fig. 6 it is now noted that the Boundary matrix is decomposed into three blocks. They 
are the blocks ZeroRows, BndryBitPlane and RowOneOnes. This decomposition is best explained with the illustrative 
example of Fig. 9. From this figure it is noted that ZeroRows assigns a 0 to a row of the Boundary matrix if it is 
composed of the special symbol X, otherwise it assigns a 1 to the row. BndryBitPlane is the same as Boundary matrix 
except that all rows made up of the special symbol X are removed. In addition BndryBitPlane replaces a 0 with a 1 in the 
first row of a column with a full zero run. See for example the second column of the Boundary matrix which has a full 
zero run and for which a 1 has been placed on the first row of the column. Finally RowOneOnes keeps track of the ones 
in the first row of BndryBitPlane that arose from replacing a 0 with a 1 as mentioned earlier. This completes the 
encoding of the NZ_Amplitude_Locations matrix of Fig. 6 into bit planes. Next the same is accomplished with the 
NZ_Amplitude_Values block of Fig. 6 which was illustrated in Fig. 7 with an example.  
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  Fig. 8 Illustrative Example: NZ_Amplitude_Locations Decompositions               Fig. 9 Illustrative Example: Boundary Decomposition 
 
 
 From Fig. 6 it is noted that NZ_Amplitude_Values is decomposed into two blocks.  One  is  a  Magnitude  
block and the other is a SignsBitPlane block. The nature of these two blocks is  surmised  from  Fig. 10 which  continues 
our running illustrative example. Note from this figure that the SignsBitPlane block assigns a zero to a negative integer 
value and a one to a positive integer value. The Magnitude block is self explanatory. Returning for the last time to Fig. 6 
it is noted that the Magnitude block is decomposed into X MagBitPlane blocks. Each of these component blocks are 
readily  explained  via  the  illustrative  example  of   Fig. 11.  It is first noted that since the maximum integer value for 
the Magnitude block is 3 there will be 3-1=2 MagBitPlane blocks (it should be noted, however, that if the integer value 2 
did not appear in the Magnitude block only one MagBitPlane block is needed with this information sent to the decoder 
as overhead). MagBitPlane-1 is noted from Fig. 11 to assign a 1 to the integer of magnitude 1 and a 0 to the other cases. 
On the other hand, MagBitPlane-2 ignores all integers with a magnitude of one, and now assigns a 1 to the integers with 
a magnitude of 2 and a 0 to the remaining integers. At this point one has the necessary stream of ones and zeros that can 
then be appropriately encoded using a lossless encoder such as an Arithmetic encoder whose output is then sent to the 
lossless PT decoder.   
 
 In Fig. 12 the lossless PT decoder is shown which receives as input the output of the lossless PT encoder (note 
that it is assumed here that a lossless decoder such as an Arithmetic decoder was appropriately used to derive this input). 
The front part of the decoder constructs an n x NB matrix, ZeroRows_M, made up of either unity rows or zero rows 
depending on the nature of the ZeroRows bits. In Fig. 13 this construction is illustrated with the running illustrative 
example. Note that the ZeroRows bits that were derived in Fig. 9 are now used to construct a 6x6  matrix  consisting  of 
either unity or zero rows. Next the  ZeroRows_M  matrix  is used in conjunction with the BndryBitPlane  bits to generate  
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         Fig. 10 Illustrative Example: Amplitude Decomposition                     Fig. 11 Illustrative Example: Magnitude Decomposition            

 

  
            Fig. 13 Illustrative Example: ZeroRows_M Construction 

 
 
              
 
              

                          Fig. 12  Lossless PT Decoder 
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      Fig. 14 Illustrative Example: BndrBitPlane_M Construction          Fig. 15 Illustrative Example: RowOneOnes_M Construction 

 
the n x NB matrix BndryBitPlane_M. This process is 
illustrated in Fig. 14 with the running example. The next 
step consists of using the derived BndryBitPlane_M matrix 
together with the RowOneOnes bits to derive a 
RowOneOnes_M matrix that is also of dimension n x NB. 
This  process  is  illustrated  once  again  in  Fig.  15 with 
our running example. Next the  RowOneOnes_M  matrix  is  
combined  with  the  LocBitPlane  bits  to  derived  a  
LocBitPlane_M  matrix  of dimension n x NB. In Fig. 16 
this combination is shown for our illustrative example 
where it is noted that the Loc_Bit_Plane_M matrix is 
identical to the NZ_Amplitude_Locations matrix shown in 
Fig. 7. This rather straightforward reconstruction procedure 
is appropriately continued until the desired error sequence 
{δ ĉ k: k=1,..,NB}  is fully derived. In the next section the 
proposed algorithm is applied to SAR imagery. 

4. A REAL-WORLD APPLICATION 
The efficacy of the previously advanced bit planes PT 
method is now demonstrated by comparing it with wavelets 
based JPEG2000 in a real-world application. The 
application consists of compressing 4MB SAR  imagery  by 

    Fig. 16 Illustrative Example: LocBitPlane_M Construction          a factor of 8,192 and then using the  decompressed  imagery 
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as the input to the covariance processor coder of a KA-
AMTI radar system subjected to severely taxing 
environmental disturbances [6]. This  SAR  imagery  is  
a  prior  knowledge used in KA-AMTI radar to achieve 
outstanding SINR radar performance [2]. 
 
 The 4MB SAR image that will be tested is 
given in Fig. 17 and is made up of 1024 rows for the 
down range of 1,500 meters and 256 columns for the 
cross range of 1,800 meters. The resolution clutter 
source cell power depicted in this figure is in dBs and is 
of the Mojave Airport in California. This image was 
compressed using a 16x1 strip processor that moves on 
the image from left to right and top to bottom. In Fig. 
18 the decompressed SAR image is shown that was 
derived when the image was compressed by a factor of 
8,192 using the PT source coder of this paper. The 
SNR, defined by 

])ˆ(/[log10 22
10 ∑∑∑∑ −=

i j
ijij

i j
ij yyySNR ,  

(4.1) 
performance associated with this image is 12.5 dBs. In 
Fig. 19 the corresponding decompressed image for 
JPEG2000 is shown. The SNR performance for this 
case yields a value of 7.0 dBs which is more than 5 dBs 
away from the PT approach. Finally, the SINR radar 
performance derived with JPEG2000 has been found to 
be at least 2dBs worse than that reported in [6] when 
using our bit planes PT source coding scheme. 
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Fig. 17  1024 x 256  4MB SAR Image        
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Fig. 18  512  Bytes PT Decompressed SAR Image 
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Fig. 19  512 Bytes JPEG2000 Decompressed SAR 
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