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Abstract — A nascent linger thermo theory is found to lead to 
a weight unbiased methodology for setting life insurance 
premiums. The approach is based on a theoretical adult 
lifespan τ calculated according to: 
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where M is the adult’s mass, ΔM is the daily food mass (e.g., 
0.4 kg for a daily 2,000 kcal diet of a M=70 kg adult) and Δτ is 
the duration of one day. Since τ is proportional to the ratio of 
an individual’s mass to the consumed food per day squared, 
i.e., (M/ΔM)2, it predicts that the theoretical adult life 
expectancy of an individual can be weight independent as long 
as the ratio M/ΔM remains constant as he gains or loses fat. 
Most importantly, this 2010 theoretical prediction is supported 
by United States National Institute of Aging (NIA) rhesus 
monkey study results, first reported in a 2012 Nature journal 
article, which surprised and shocked the researchers when they 
discovered that higher weight (obese) monkeys had a similar 
life expectancy as lower weight ones. It is thus expected that 
the proposed premium acquisition method should improve on 
traditional calculations and actuarial tables that often presume 
that obese individuals have lower life expectancies. 
 
Keywords — thermodynamics, lingerdynamics, entropy, 
ectropy, information, latency, statistical physics, lifespan, life 
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I.  INTRODUCTION 

LIFE insurance premiums are calculated [1] on the basis of a 
series of parameters including demographic data, medical 
history, and weight. It is customary for insurance companies to 
utilize actuarial tables and other calculations in an attempt to 
predict the individual’s life expectancy. This predicted life 
expectancy, in turn, impacts the individual’s life insurance 
premium. Those individuals with an estimated short life 
expectancy would pay high premiums while those with 
relatively long life expectancy pay lower premiums. 
Unfortunately, the actuarial tables used by insurance 
companies only correlate some variables which are currently 
believed to impact life expectancy. Additional medical studies 
have discovered new variables that the current tables fail to 
consider. For instance, these tables often presume that obese 
individuals have lower life expectancies, when this ‘by itself’ 
may not be the case at all as a major study with rhesus 
monkeys has recently revealed [2]-[3]. It is thus desirable to 
provide an improved method for calculating life insurance 

premiums that takes into account additional variables so as to 
provide more accurate life expectancy predictions.  

In this paper a weight unbiased methodology for setting life 
insurance premiums is advanced. The derivation of the 
premium has at its core a theoretical adult lifespan τ calculated 
according to: 
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where M is the mass of the adult, ΔM is the mass of the 
consumed food per day (e.g., 0.4 kg for a daily 2,000 kcal diet 
of a M=70 kg adult, where a conversion factor of 5,000 kcal 
per kg was used) and Δτ is the duration of one day. In Section 
II it will be found that the quadratic equation (1) inherently 
surfaces from within a universal linger-thermo equation of 
linger thermo theory (LTT) [4]-[7]. LTT is a nascent theory 
that is solidly anchored in statistical physics and information 
systems and thus can be a judicious predictor of wide ranging 
phenomena as is highlighted in [4] and also touched on in 
Section II of this paper. Since τ is proportional to the ratio of 
the individual’s mass to the consumed food per day squared, 
i.e., (M/ΔM)2, equation (1) predicts that the theoretical adult 
lifespan of an individual can be weight independent as long as 
the ratio M/ΔM remains constant as he gains or loses fat. Most 
importantly, this 2010 theoretical prediction [6] is supported 
by a recent United States National Institute of Aging (NIA) 
study published September 13, 2012 in the journal Nature [3], 
which surprised and shocked the researchers when they 
discovered that higher weight (obese) rhesus monkeys had a 
similar life expectancy as lower weight ones. One of the 
reasons why these NIA study results have attracted such 
attention [2] is because the study started in the 1980s, which is 
sufficient time to start deriving conclusions since the lifespan 
of rhesus monkeys, is around 35 years. Unfortunately, 
however, in the case of humans a similar type of study is not 
feasible since our lifespan is around 120 years. Yet, due to the 
similarities of our two species, it is reasonable to assume that 
the rhesus monkeys study results would also apply to humans. 
It is thus expected that the proposed LTT method should 
improve on traditional calculations and actuarial tables that 
often presume that obese individuals have lower life-
expectancies.       

The organization of this paper is as follows: In Section II a 
background section is given that succinctly explains the most 
basic elements of LTT that, in turn, lead to (1). In Sections III 
and IV a weight unbiased methodology for setting life-
insurance premiums is advanced. In Section V the method is 
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illustrated with five examples. Finally in Section VI 
conclusions are drawn. 

II. BACKGROUND 
In this section, the emergence of the theoretical adult 

lifespan equation (1)—first disclosed in [6]—from linger 
thermo theory is explored. The discussion begins with a study 
of the lifespan τ of the source-information bits in LTT (or life-
bits in short) that are assumed responsible for enabling the 
observation of some physical entity in a closed-system, or 
universe as is called in thermodynamics [8], where the 
physical entity can either be of a non-living, e.g., an image, or 
living, e.g., a human, nature. Moreover, it is assumed that 
LTT’s life-bits can only leave the closed-system as radiation 
with the caveat that if their mass-energy is later restored to the 
system it may no longer represent life-bits. Thus if a sufficient 
number of enabling life-bits are emitted without replacement 
from the system it can then be said that the physical entity 
represented by these life-bits is not longer there. An image 
source coding example can be used to illustrate these ideas. 
Consider a subbands based minimum mean square error (MMSE) 
predictive-transform (PT) source coder [9] that encodes a single 
monochrome 512x512 pixels image, say the often encoded Lena 
image, in seven subbands innovation-transform-coefficient 
vectors {δc’k:k=1,.,7}. Our closed-system would then consist of 
the mass-energy representing the MMSE PT source-coder plus 
the mass-energy representing {δc’k:k=1,.,7}. The lifespan τ of the 
physical entity of interest can then be defined, for instance, as the 
emission time of the expected number of life-bits encoding the 
innovations {δc’k:k=1,.,7} whose mass-energy may vary. Clearly 
similar ideas can be applied to human lifespan with life-bits 
radiated each day from the body cells as black-body radiation 
[10]. In [4] a theoretical estimate of the number of these daily 
life-bits is determined for a 70 kg individual who consumes 0.4 
kg of food daily. The number is 0.3 megabytes with a radiation 
energy that is approximately 10% of the individual’s daily 
radiation of 8.368 MJ [10]. The loss of LTT’s life-bits for a 
biological system produce the effects of aging after childhood 
(like lost subbands of an image [9], [11]), say after 18 years of 
age for a human when it is assumed that neither new or lost life-
bits are being created or replaced, by whatever means, at a 
satisfactory rate. We next proceed to a discussion of LTT’s origin 
and basic assumptions.  

LTT inherently surfaced as the dynamics dual of the 
stationary entropy/ectropic based latency information theory 
[4]. In LTT four interacting information system types exist in 
a closed-system whose volume V contains a fixed amount of 
mass-energy E=Mc2 where E is energy, M is mass and c is the 
speed of light in a vacuum. The four information systems are: 

 
1) An ‘information-source’ whose source-information 

expectation—called the thermo source-entropy, in binary digit 
(bit) space-units, with symbol H~ —is found according to: 

H~ = log2Ω = S/kln2                           (2) 
where Ω is the number of possible microstates that the 
universe can assume, S is the thermodynamics entropy and k is 
the Boltzmann’s constant, both in physical SI J/K units. 
 

2) An ‘information-retainer’ whose retainer-information 
expectation—called the thermo retainer-entropy, in SI squared 
meter (m2) space-units, with symbol N~ —is given by:  

( )222 /244~
evGMππrN ==                       (3) 

where 4πr2 is a spherical retainer’s surface area with r being 
the radius, which is the smallest possible surface area for 
retained mass-energy in a fixed volume V, M is a point-mass 
residing at the sphere’s center, G is the gravitational constant 
and ve is the escape speed of mass-energy at the volume’s edge 
that is also inversely related to r according to: 22 eGM/vr = . 
While the mass-energy E=Mc2 remains constant for a closed-
system, or universe, the magnitude of ve varies as the 
universe’s physical characteristics, or medium, changes with 
time. Extreme values are found for ve in black-hole mediums 
where it attains the upper bound of the speed of light c, i.e., 
ve=c, and photon-gas mediums where it approaches the lower 
bound of zero. The thermodynamics entropy for a ‘spherically 
shaped’ photon-gas is given by 33333 135/)(16 hckrkTS π=  

[4]-[5] where T is absolute temperature, h  is the reduced 
Planck constant and all the other quantities were defined 
earlier. When 22 eGM/vr =  is substituted in this entropy 
expression the photon-gas’s escape velocity equation 

32 2038 S/kcπ kTGM/ve h=  surfaces. From this equation it is 
then noted that ve goes to zero with the passing of time as the 
universe’s entropy S continuously increases due to the 2nd law 
of thermodynamics (or equivalently the 2nd law of source-
thermodynamics [4]), while the thermal energy kT 
continuously decreases due to the 1st law of thermodynamics 
(which requires the conservation of energy). Using these 
bounds for ve in 22 eGM/vr = , it is then found that the 
minimum radius of a minimum surface area spherical universe 
is that of a black-hole which is given by 22GM/crMin = , and its 
maximum radius is that of a photon-gas which is given by rMax 
= πkT/S/kc 4203 3h  where the value of rMax approaches infinity 
with the passing of time. These retainer-entropy enhanced 
thermodynamics results reveal an increase in the Universe’s 
volume as it transitions from a black-hole to a photon-gas 
medium that has the merit of being consistent with 
observations positing that our Universe has been continuously 
increasing its volume since more than 13.7 billion years ago 
when it is believed it started with the explosion of a maximally 
dense mass-energy medium (the so-called Big Bang Theory 
for our Universe’s creation). This result confirms the existence 
in our LTT of a nascent ‘first principles’ retainer-entropy 
enhanced thermodynamics that inherently predicts the 
observed expansion of a closed-system, or universe [12]. Thus 
a new 2nd law of retainer-thermodynamics has surfaced that is 
the retainer dual of the source 2nd law of source-
thermodynamics. While in the source case the 2nd law tells us 
that H~  increases (or the mass-energy order decreases) with 
time, in the retainer case the 2nd law informs us that N~  
increases (or the mass-energy retention decreases) with time.    
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3) An ‘information-processor’ whose processor-latency 
delay—called the linger processor-ectropy, in binary operator 
(bor) time-units, with symbol K~ —is given by:  

HK ~~ =                                      (4) 
where H~  denotes the expected number of bits inputted to the 
information-processor and K~  denotes, for this expected 
number, the maximum number of computational delay levels 
(or bors) from input to output of the processor. For instance if 
H~  is 1024 bits, then the maximum number of computational 
levels from input to output K~  for the expected number of 1024 
input bits is 1012 bors. From (4) a monotonically increasing 
relation between H~  and K~  is observed that inherently gives 
rise to a processor time-dual [4]-[5] for the 2nd law of source-
thermodynamics. This time-dual has been called the 2nd law of 
processor-lingerdynamics telling us that K~  increases (or the 
mass-energy connections of computation decreases) with time. 
 

4) An ‘information-mover’ whose mover-latency delay—
called the linger mover-ectropy, in SI second (s) time-units, 
with symbol A~ —is evaluated according to: 

24/~/~ vNvrA ππ ==                          (5) 

where N~  is the expected thermo retainer-entropy, A~  is half 
the period of an object’s circular motion driven by the point-
mass M on the surface of a sphere of radius r, and v is the 
constant speed of the circular motion (which is the same as the 
escape speed ve divided by 2 , i.e., 2/evv = , since 

== 2GM/vr 22 eGM/v ). From (5) a monotonically increasing 

relationship between N~  and A~  is observed that inherently 
gives rise to a mover time-dual [4]-[5] for the 2nd law of 
retainer-thermodynamics. This time-dual has been called the 
2nd law of mover-lingerdynamics telling us that A~  increases 
(or the mass-energy mobility decreases) with time. 

In [4] after investigating the thermo source-entropy (1) for 
black-hole, ideal-gas and photon-gas mediums and making use 
of the following lifespan pace Π expression in SI sec/m3 units: 

V/τ=Π                                   (6) 
where τ denotes the lifespan of life-bits stored in a closed-
system’s mass-energy M=E/c2 of spherical volume V=4πr3/3 
[4], the following universal linger-thermo equation surfaced:  
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where gMed is a medium dependent function that relates the 
mathematical-units entropy-ectropy pair ( H~ , K~ ) to: 1) the 
physical-units entropy-ectropy pair ( N~ , A~ ) and its so-called 
quantum of operation (QOO) [4] version (Δ N~ : called the 
‘breath of space’, Δ A~ : called the ‘bell of time’); and 2) the 
physical spherical-volume V, lifespan τ, mass M and radius r 
and their QOO-volume ΔV, QOO-lifespan  Δτ, QOO-mass ΔM 
and QOO-radius Δr. An example of gMed is for a black-hole 
where gBH is a unity gain, thus (7) becomes: H~ = N~ /Δ N~  = 
V/ΔV = τ/Δτ  = (M/ΔM)2 = (r/Δr)2=( A~ /Δ A~ )2= K~ 2. Moreover, 

the lifespan pace for a black-hole has been found and is given 
by Π=τ/V= χ = Gc h/480 2 =6.1203x1063 sec/m3 [4]. This pace 
expression gives the largest possible pace value with symbol χ 
for any medium since a black-hole is the medium that offers 
the least resistance to the retention of mass-energy. 
Furthermore, χ has been called the pace of dark in a black-
hole since it is the maximum-retention space-dual of the 
maximum-motion speed of light in a vacuum c. Finally it is 
noted that expression (1) emerges naturally from within the 
linger-thermo equation (7), where the physical meaning of τ is 
in terms of radiated life-bits as discussed in some detail in [4]. 
 

III. SETTING LIFE-EXPECTANCY PREMIUMS 
When solved for the kilograms of food consumption per 

day, i.e., ΔM, the theoretical adult lifespan τ equation (1) 
yields the following linear equation on M: 

MM  /ττΔ=Δ                               (8) 
where ττ /Δ  is the slope. In Fig. 1 expression (8) is plotted 
for four different cases of τ with the duration of one day 
Δτ  being 1/365 in year units. The four cases displayed for τ 
are 42, 62, 82 and 102 years of theoretical adult lifespan. In 
the vertical axis of this figure the amount of kcal/day linked to 
ΔM is shown with the conversion factor of 5,000 from kg to 
kcal used. In the horizontal axis the mass of the individual is 
plotted. To the theoretical adult lifespan an additional 
childhood lifespan of 18 years has been added to yield four 
cases of total lifespan of 60, 80, 100 and 120 years—the 
maximum total lifespan believed to be around 120 years [13].  

A close scrutiny of Fig. 1 reveals that lower weight and 
higher weight (obese) individuals would have the same 
theoretical life-expectancy when their M/ΔM ratios are 
identical. For instance, note that 70 kg and 100 kg individuals 
would have the same theoretical adult lifespan of 102 years if 
the 70 kg individual consumes 1814 kcal/day and the 100 kg 
one consumes 2591 kcal/day. When referring to a single 
individual this result similarly tells us that as long as the 
M/ΔM ratio remains constant the theoretical life-expectancy 
will not change when the individual’s weight changes. This 
property is consistent with the results obtained with rhesus 
monkeys [3]. In addition, it is shown in the same figure that an 
individual that maintains his/her weight constant at 70 kg 
would decrease the theoretical adult lifespan if he consumes a 
larger amount of kilocalories per day. For instance, an increase 
of 209 kilocalories per day by a 70 kg individual who 
normally consumes 1,814 kcal per day to maintain this mass 
will reduce his τ by 20 years. This result is expected since the 
increased burning of calories per day to maintain a constant 70 
kg mass is accompanied by a metabolism surge [14], or 
equivalently, an increased wear down of the individual’s 
biological engine, which in turn lowers his lifespan.  

Using the theoretical adult lifespan equation results 
displayed in Fig. 1 at its core, the flowchart of Fig. 2 is then 
advanced as a framework for the evaluation of a life insurance 
premium that should improve on traditional calculations and 
actuarial tables that often presume that obese individuals have 
lower life-expectancies. The flowchart has six steps. They are: 
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Fig. 1 Theoretical Adult Lifespan τ of Individual as a Function of Mass and Kilocalories/Day 
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Step 1 
In this initial step the individual’s mass M is given. 
  

Step 2 
In this second step the individual’s age α is given.  

 
Step 3 

In this third step the individual’s energy consumption per 
day is requested, e.g., of 2,000 kcal/day or equivalently 0.4 
kg/day which is the value assigned to ΔM. When the ΔM value 
is unknown a good estimate may be available using a health 
index. For instance, one approach discussed in Section IV is to 
use the body mass index (BMI) [14]—defined as the ratio of 
the individual’s mass M to his height h squared—to make a 
correction of the following ΔM prediction which gives rise to 
the longest possible lifespan: 

MMMM
Max

Opt        
τ
τ

τ
τ Δ

=Δ≤
Δ

=Δ                    (9) 

where ΔMOpt is a prediction of ΔM which denotes the optimum 
energy consumption per day that will generate the assumed 
maximum theoretical adult lifespan τMax of the scheme, e.g., of 
102 years. Also note from (9) that the estimated ΔM can never 
be less than ΔMOpt since the theoretical adult lifespan τ will 
then be greater than τMax , which cannot occur since ττ ≥Max

. 
 
Step 4 

In this fourth step the individual provides additional 
available data such as: height, waist circumference, hips 
circumference, gender, residence, diet, ethnicity, fitness, 
income, education, body volume index (BVI), medical history, 
etc. All of this data is encoded in the data vector x of 
appropriate dimensions, that may also include the mass M of 
the individual. 

 
Step 5 

In this fifth step the theoretical adult lifespan τ of the 
individual is found according to (1). For example, for a 70 kg 
(154 lbs) individual with an energy consumption of 2,000 
kilocalories per day (or ΔM = 0.4 kg) and Δτ = 1/365 years τ  
is determined to be approximately 84 years. Moreover, when 
an additional childhood lifespan of 18 years is added to the 84 
years, a total theoretical lifespan Γ of 102 years is determined 
for this person.  

 
Step 6 

In this final step a life insurance premium is determined by 
an insurance company from the value of the ‘expectation of 
life’ F that is found according to: 

F = α pΓ (x) (Γ  - α)                          (10) 
where α pΓ (x) is the individual’s probability of survival from 
the current age α to the total theoretical lifespan Γ. The value 
of α pΓ(x) is derived using actuarial tables [1] in conjunction 
with the additional vector data set x provided by the individual 
in Step 4. As an illustration of the evaluation of (10), the 

expectation of life F would be of 59 years when α=40 years, 
Γ=102 years and α pΓ(x) =0.95.  More examples will follow in 
Section V. 
 

IV. THE FOOD CONSUMPTION PER DAY 
When the individual’s ΔM is not available, easily accessible 

health indexes can be used to obtain a reasonable estimate. 
One index would be the body mass index or BMI, which is the 
ratio of body mass to squared height of an individual, and 
another would be the waist to hips index or WHI, which is the 
ratio of waist circumference to hips circumference. Next a 
BMI based scheme for generating a ΔM estimate is described. 

The BMI is a power of 2 height index that has been found to 
be the best proxy for body fat percentage among ratios of 
weight and height. Nevertheless, it should be noted that for 
very tall individuals powers of height between 2 and 3 may be 
better indexes since they are thought to better reflect 
significant body frame variations from standard frames. In Fig. 
3 the BMI is displayed for a sufficiently large range of masses 
and heights. The connections between the BMI numbers and 
the weight health classifications displayed in this figure vary 
somewhat depending on the age and body type of the 
population that it represents. In particular, Fig. 3 is assumed to 
represent data from adult individuals in the United States 
where a BMI of 25 is often considered to be ideal or optimum.  
Three different ranges are identified. They are: 1) the normal/ 
overweight BMI range from 18.5 to 30 where the optimum 25 
value resides: this range is often said to be characteristic of 
healthy individuals; 2) the underweight/malnutrition BMI 
range of less than 18.5 values: this range is often said to be 
characteristic of unhealthy individuals; and 3) the 
overweight/obese BMI range of greater than 30 values: this 
range is often said to be characteristic of unhealthy 
individuals. From these observations it is noted that the 
‘deviation’ of the measured BMI from the assumed optimum 
value of 25, expressed as the absolute value expression |BMI-
25|, is all that is needed to determine if one is dealing with an 
unhealthy situation. That is, the larger the value of the 
deviation |BMI-25| is the more likely that an unhealthy 
individual will be found. If the deviation |BMI-25| is then used 
to derive an estimate M̂Δ  for ΔM that satisfies the inequality 
(9), M̂Δ  can be used in (1) to find an estimate τ̂  for τ  that is 
less than or equal to τMax, i.e., Maxττ ≤ˆ . 

To derive M̂Δ  the following BMI-based prediction plus 
correction scheme [15]-[16] is proposed:  

OptOptOptOptCP MMxKMMMM ββ /)(ˆˆˆ Δ−Δ+Δ=Δ+Δ=Δ  (11) 
2/ hM=β                                  (12) 

25=Optβ                                   (13) 

where: 1) OptP MM Δ=Δ ˆ  is a prediction of ΔM with ΔMOpt, 
which is the optimum theoretical daily food intake resulting in 
τMax (9); 2) β is the symbol used to represent the BMI=M/h2 
with h being the height in meters of the individual; 3) βOpt=25  
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BMIOpt = 25

ΒΜΙ = 31.5ΒΜΙ = 18.5

BMI = 28

BMI = 22

 
 

Fig. 3   The Body Mass Index (BMI) Plot 
 
is the optimum BMI value extracted from Fig. 3; 4) K(x) is a 
positive number whose value is determined in conjunction 
with the given demographic data x using actuarial tables; and 
5) 

OptOptOptC MMxKM ββ /)(ˆ Δ−Δ=Δ  is both a K(x) and β based 

correction of the first order prediction PM̂Δ . More 
specifically, CM̂Δ  is a non-negative number that when added 

to PM̂Δ  yields a final estimate for ΔM, i.e., 

CP MMM ˆˆˆ Δ+Δ=Δ  that is greater than or equal to PM̂Δ . A 
close investigation of the height h of an individual with a fixed 
mass M reveals that: 1) when h is the same as hOpt—which 
yields βOpt=M/(hOpt)2—the correction term 

CM̂Δ  in (11) 
vanishes thus 

OptP MMM Δ=Δ=Δ ˆˆ  which in turn tells us from 
(9) that the best possible lifespan is achieved;  2) a height h 
that is less than hOpt, i.e., h < hOpt, yields β > βOpt (the 
overweight/obese case) with an estimated value for ΔM greater 
than ΔMOpt which yields τ lower than τMax,; and 3) a height h 
that is greater than hOpt, i.e., h > hOpt, yields β <βOpt (the 
normal/underweight case) with an estimated value for ΔM 
greater than ΔMOpt which yields τ lower than τMax,, with the 
caveat that the estimated ΔM is only a virtual, i.e., not real, 
value that nevertheless would give a realistic result for τ. 
Finally it is noted that for the WHI case similar types of 
equations as those of (11)-(13) can be used to get an estimate 
for ΔM.  
 

V. PREMIUM SETTING EXAMPLES 
Five premium setting examples are given next.  
 
 

Example 1 
 A system for determining a life insurance premium is 

established that sets the childhood lifespan τChild to eighteen 
years, the maximum total lifespan Γ Max to 120 years and thus 
the maximum theoretical adult lifespan τMax to 102 years. The 
parameters of an individual are received as follows: M = 70 
kg; age α=40 years; ΔM=0.4  kg per day (based on 2,000 kcal 
per day at 5,000 kcal per kg); life-expectancy condition=1 
(ideal); height=1.58 meters; waist circumference = 70 cm; hip 
circumference = 100 cm; gender = female; country = US; diet 
=1 (excellent); ethnicity = 1 (Hispanic); fitness = 1 (excellent); 
economic class = 1 (middle class); BVI =0 (denoting data is 
not available); height power = 2 (standard BMI index). When 
the aforementioned parameters are received Steps 1, 2, 3 and 4 
of the flowchart of Fig. 2 have been performed. The individual 
theoretical adult lifespan is then determined as follows: 

( ) ( )( ) yrs 84 /4.0/70365/1/ 22 ≈=ΔΔ= daykgkgdaysyrMMττ  (14) 
Using the set value of eighteen for the childhood lifespan 
τChild, a theoretical total lifespan Γ  is given by: 

yrs 1021884 =+=+=Γ childττ                    (15) 
Actuarial tables are consulted [1] and a suitable probability of 
survival α pΓ(x) is chosen based on the individual’s 
demographic data. In the hypothetical Example 1, α pΓ(x) is 
0.95 and the current age α is 40 yrs. An expected lifespan F is 
as follow: 

yrsyrsyrsxpF 59)40102(95.0))(( =−=−Γ= Γ αα   (16) 
 
Example 2 

A system for determining a life insurance premium is 
established identical to Example 1 except in that the ΔM is not 
known. The ΔM is calculated based on the BMI of the 
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individual. The individual’s BMI or β is calculated using the 
mass M and the height h of the individual person as follows: 

2858.1/70/ 22 === hMβ                      (17) 
Based on demographic information an optimum βOpt is set to 
25 and an optimum ΔMOpt is set to 0.3628 kg via (9). A value 
of 0.85 is set for K(x) based on the demographic profile of the 
individual. The estimate for ΔM is then calculated as shown 
below:   

) |/1|)(1 (ˆ
OptOpt xKMM ββ−+Δ=Δ              (18) 

kg/day 4.0) |25/281|85.01 (3628.0ˆ =−+=ΔM        (19) 
The individual’s estimated τ is then determined as follows: 

( ) ( )( ) yrs 84 /4.0/70365/1ˆ/ˆ 22
≈=ΔΔ= daykgkgdaysyrMMττ   (20) 

Using the set value of eighteen for the childhood lifespan 
τChild, an estimated theoretical total lifespan  Γ  is given by: 

yrs 1021884ˆˆ =+=+=Γ childττ                     (21) 
Actuarial tables are consulted and a suitable probability of 
survival α pΓ(x) is chosen based on the individual person’s 
demographic data. In the hypothetical Example 1, α pΓ(x) is 
0.95 and the current age α is 40 yrs. An expected lifespan F̂  is 
as follow: 

yrsyrsyrsxpF 59)40102(95.0)ˆ)((ˆ =−=−Γ= Γ αα    (22) 
By contrasting Examples 1 and 2 it is apparent both 
individuals have the same expected lifespan, i.e., FF ˆ= , 
despite the calculation of Example 2 not having access to the 
nutritional consumption rate of the individual. 
 
Example 3  

A system for determining a life insurance premium is 
established identical to Example 1, except in that the ΔM is not 
known and M=46.18 kg. The ΔM is calculated based on the 
BMI of the individual. The individual’s BMI or β is calculated 
using the mass M and the height h of the individual person as 
follows: 

5.1858.1/18.46/ 22 === hMβ                (23) 
Based on demographic information an optimum βOpt is set to 
25 and an optimum ΔMOpt is set to 0.2393 kg via (9). A value 
of 0.4 is set for K(x) based on the demographic profile of the 
individual. The estimate for ΔM is then calculated as shown 
below:   

) |/1|)(1 (ˆ
OptOpt xKMM ββ−+Δ=Δ               (24) 

kg/day 2639.0) |25/5.181|4.01 (2393.0ˆ =−+=ΔM     (25) 
The individual’s estimated τ is then determined as follows: 

( ) ( )( ) yrs 84 /2639.0/18.46365/1ˆ/ˆ 22
≈=ΔΔ= daykgkgdaysyrMMττ  (26) 

Using the set value of eighteen for the childhood lifespan 
τChild, an estimated theoretical total lifespan Γ  is given by: 

yrs 1021884ˆˆ =+=+=Γ childττ                     (27) 
Actuarial tables are consulted and a suitable probability of 
survival α pΓ(x) is chosen based on the individual person’s 
demographic data. In the hypothetical Example 1, α pΓ(x) is 
0.95 and the current age α is 40 yrs. An expected lifespan F̂  is 
as follow: 

yrsyrsyrsxpF 59)40102(95.0)ˆ)((ˆ =−=−Γ= Γ αα    (28) 
By contrasting Examples 2 and 3 it is apparent that the same 
expected lifespan F̂  is derived despite one being underweight 
with BMI=18.5 < 25 (M/Δ M̂ =46.18/0.2639=175), and the 
other being overweight with BMI=28.0404>25 (M/Δ M̂ = 
70/0.4=175). This result is consistent with (1) because in 
Examples 2 and 3 the same mass to QOO-mass ratio of 175 is 
derived.  
 
Example 4  

A system for determining a life insurance premium is 
established identical to Example 1 except in that the ΔM is not 
known or is not provided and M=78.64 kg. The ΔM is 
calculated based on the BMI of the individual. The 
individual’s BMI or β is calculated using the mass M and the 
height h of the individual person as follows: 

5.3158.1/64.78/ 22 === hMβ                (29) 
Based on demographic information an optimum βOpt is set to 
25 and an optimum ΔMOpt is set to 0.4076 kg via (9). A value 
of 0.4 is set for K(x) based on the demographic profile of the 
individual. The estimate for ΔM is then calculated as shown 
below:         

) |/1|)(1 (ˆ
OptOpt xKMM ββ−+Δ=Δ              (30) 

kg/day 45.0) |25/5.311|4.01 (4076.0ˆ =−+=ΔM       (31) 
The individual’s estimated τ is then determined as follows: 

( ) ( )( ) yrs 84 /45.0/64.78365/1ˆ/ˆ 22
≈=ΔΔ= daykgkgdaysyrMMττ  (32) 

Using the set value of eighteen for the childhood lifespan 
τChild, an estimated theoretical total lifespan  Γ  is given by: 

yrs 1021884ˆˆ =+=+=Γ childττ                       (33) 
Actuarial tables are consulted and a suitable probability of 
survival α pΓ(x) is chosen based on the individual person’s 
demographic data. In the hypothetical Example 1, α pΓ(x) is 
0.95 and the current age α is 40 yrs. An expected lifespan F̂  is 
as follow: 

yrsyrsyrsxpF 59)40102(95.0)ˆ)((ˆ =−=−Γ= Γ αα    (34) 
By contrasting Examples 3 and 4 it is apparent that the same 
expected lifespan F̂  is derived despite one being underweight 
with BMI=18.5 < 25 (M/Δ M̂ =46.18/0.2639=175), and the 
other being obese with BMI=31.5>25 (M/Δ M̂ = 78.64/0.45 
=175). This result is consistent with (1) because in Examples 3 
and 4 the same mass to QOO-mass ratio of 175 is derived. 
 
Example 5 

A system for determining a life insurance premium is 
established identical to Example 1 except in that the ΔM is not 
known or is not provided and h=1.7838 meters. The ΔM is 
calculated based on the BMI of the individual. The 
individual’s BMI or β is calculated using the mass M and the 
height h of the individual person as follows: 

227838.1/70/ 22 === hMβ                   (35) 
Based on demographic information an optimum βOpt is set to 
25 and an optimum ΔMOpt is set to 0.3628 kg via (9). A value 
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of 0.85 is set for K(x) based on the demographic profile of the 
individual. The estimate for ΔM is then calculated as shown 
below:   

) |/1|)(1 (ˆ
OptOpt xKMM ββ−+Δ=Δ                 (36) 

kg/day 4.0) |25/221|85.01 (3628.0ˆ =−+=ΔM       (37) 
The individual’s estimated τ is then determined as follows: 

( ) ( )( ) yrs 84 /4.0/70365/1ˆ/ˆ 22
≈=ΔΔ= daykgkgdaysyrMMττ   (38) 

Using the set value of eighteen for the childhood lifespan 
τChild, an estimated theoretical total lifespan  Γ  is given by: 

yrs 1021884ˆˆ =+=+=Γ childττ                     (39) 
Actuarial tables are consulted and a suitable probability of 
survival α pΓ(x) is chosen is chosen based on the individual 
person’s demographic data. In the hypothetical Example 1, 
α pΓ(x) is 0.95 and the current age α is 40 yrs. An expected 
lifespan F̂  is as follow: 

yrsyrsyrsxpF 59)40102(95.0)ˆ)((ˆ =−=−Γ= Γ αα   (40) 
By contrasting Examples 2 and 5 it is apparent that the same 
expected lifespan F̂  is derived despite one being underweight 
with BMI=22 < 25 (M/Δ M̂ =70/0.4=175), and the other being 
overweight with BMI=28 > 25 (M/Δ M̂ = 70/0.4 =175). This 
result is consistent with (1) because in Examples 2 and 5 the 
same mass to QOO-mass ratio of 175 is derived. However, it 
should be noted that the QOO-mass estimate M̂Δ  of Example 
5 (37) is virtual, i.e., not real, since it does not correspond to 
the actual amount that the individual is expected to consume 
from day to day which must be less than ΔMOpt=0.3628 kg.  

At this point it should be highlighted that K(x) is a weight 
unbiased gain. This property is noted from Examples 2, 3 and 
4 where regardless of the received mass value the gain K(x) is 
adjusted to yield the same life expectancy—provided the 
demographic data x, except for the M value, does not change. 
To further illustrate the point consider the case where the 0.85 
value for K(x) of Example 2 with M=70 kg is also applied to 
Example 3 with M=46.18 kg and Example 4 with M=78.64 
kg, i.e., K(x) is now weight independent. When this occurs a 
theoretical adult lifespan of 69 years is derived for both 
Examples 3 and 4, which is 15 years less than the 84 years of 
Example 2 (20). Thus it is concluded that the individuals of 
Examples 3 and 4 will benefit greatly from the use by life 
insurance companies of linger thermo theory’s weight 
unbiased methodology for setting a life insurance premium. 
 

VI.  CONCLUSIONS 
In this paper a nascent linger thermo theory was found to 

lead to a weight unbiased methodology for setting life 
insurance premiums. The approach was based on a theoretical 
adult lifespan equation that inherently surfaces from within the 
universal linger-thermo equation of linger thermo theory. The 
lifespan equation yielded a prediction proportional in value to 
the square of the ratio of an individual’s mass to the mass of 
food consumed daily. This equation predicted that the life 
expectancy of a normal weight individual who significantly 
increased or lowered his/her weight could still have the same 
life expectancy. This theoretical prediction had the virtue of 

being consistent with United States National Institute of Aging 
(NIA) rhesus monkeys study results first reported in a 2012 
Nature journal article. A scheme was then advanced using this 
lifespan equation that inherently led to a weight unbiased 
methodology for life expectancy premium evaluations. The 
method required an estimation of the mass of food consumed 
daily. To achieve this goal a body mass index (BMI) based 
prediction plus correction scheme was advanced that yielded 
reasonable estimates for the food amount consumed daily. 
Most importantly, this scheme had the merit of leading to the 
same theoretical life expectations for dissimilar weight 
individuals whose demographic data was otherwise identical. 
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